Ranges of protons in biological targets

Open access

Abstract

The paper introduces a simple fitting function for quick assessment of proton ranges in biological targets and human tissues. The function has been found by fitting an extensive data set of Monte Carlo proton ranges obtained with the aid of the SRIM-2013 code. The data has been collected for 28 different targets at 8 energies in the interval from 60 MeV to 220 MeV. The paper shows that at a given kinetic proton-beam energy, the Monte Carlo ranges can be satisfactorily fitted by a power function that depends solely on the target density. This is a great advantage for targets, for which the exact chemical composition is not known, or the mean ionizing potential is not reliably known. The satisfactory fit is meant as the fit that stays within the natural range straggling of the Monte Carlo ranges. In the second step, the energy-scaling yielding a universal fitting formula for proton ranges as a function of proton-beam energy and target density is introduced and discussed.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] H. Owen R. MacKay K. Peach and S. Smith ”Hadron accelerators for radiotherapy” Contemporary Physics 2014 vol. 55 no. 2 55-74.

  • [2] H. Owen D. Holder J. R. Alonso and R. MacKay ”Technologies for delivery of proton and ion beams for radiotherapy (Review)” International Journal of Modern Physics A 2014 vol. 29 no.14 article number 1441002 1-39.

  • [3] H. Owen A. Lomax and S. Jolly ”Current and future accelerator technologies for charged particle therapy” Nuclear Instruments and Methods Physics Research A 2016 vol. 809 96-104.

  • [4] M. Pavlovič ”A design of a rotating gantry for non-symmetric ion-therapy beams” Nuclear Instruments and Methods Physics Research A 1999 vol. 438 548-559.

  • [5] M. Pavlovič E. Griesmayer and R. Seemann ”Beam-transport study of an isocentric rotating ion gantry with minimum number of quadrupoles” Nuclear Instruments and Methods Physics Research A 2005 vol. 545 412-426.

  • [6] J. Kim and M. Yoon ”Design study of a superconducting gantry for carbon beam therapy” Journal of the Korean Physical So- ciety 2016 vol. 69 no. 6 1048-1052.

  • [7] J. Bokor and M. Pavlovič ”An ion-optical design study of a carbon-ion rotating gantry with a superconducting final bending magnet” Nuclear Instruments and Methods Physics Research A 2016 vol. 812 122-133.

  • [8] J. F. Ziegler M. D. Ziegler and J. P. Biersack ”SRIM - The stopping and range of ions matter (2010)” Nuclear Instruments and Methods Physics Research B 2010 vol. 268 no. 11-12 1818-1823.

  • [9] E. Griesmayer T. Schreiner and M. Pavlovič ”The MedAustron project” Nuclear Instruments and Methods Physics Research B 2007 vol. 258 no. 1 134-138.

  • [10] M. Pavlovič and A. Hammerle Ion Ranges Different Human Tissues Lambert Academic Publishing Saarbr¨ucken Germany 2017 ISBN: 978-3-330-01715-3.

  • [11] W. Ulmer and B. Schaffner ”Foundation of an analytical proton beamlet model for inclusion a general proton dose calculation system” Radiation Physics and Chemistry 2011 vol. 80 378-389.

  • [12] E. V. Bellinzona M. Ciocca A. Embriaco A. Ferrari A. Fontana A. Mairani K. Parodi A. Rotondi P. Sala and T. Tessonnier ”A model for the accurate computation of the lateral scattering of protons water” Physics Medicine & Biology 2016 vol. 61 N102-N117.

  • [13] J. Kempe and A. Brahme ”Energy-range relation and mean energy variation therapeutic particle beams” Medical Physics 2008 vol. 35 no.1 159-170.

  • [14] W. Ulmer ”Theoretical aspects of energy-range relations stopping power and energy straggling of protons” Radiation Physics and Chemistry 2007 vol. 76 1089-1107.

  • [15] M. Pavlovič M. Miglierini E. Mustafin W. Ensinger A. ˇ Sag´ atová and M. ˇ Soka ” Radiation damage studies of soft magnetic metallic glasses irradiated with high-energy heavy ions” Radiation Effects and Defects Solids 2015 vol. 170 no. 1 1-6.

  • [16] T. C. Hufnagel C. A. Schuh and M. L. Falk ”Deformation of metallic glasses: Recent developments theory simulations and experiments” Acta Materialia 2016 vol. 109 375-393.

  • [17] M. Pavlovič M. Miglierini E. Mustafin T. Seidl M. šoka and W. Ensinger ”Influence of high energy heavy ions on magnetic susceptibility of soft magnetic metallic glasses” Acta Physica Polonica A 2014 vol. 126 no.1 54-55.

  • [18] M. Miglierini A. Lančok and M. Pavlovič ”CEMS studies of structural modifications of metallic glasses by ion bombardment” The Physics of Metals and Metallography 2010 vol. 109 no.5 469-474.

  • [19] V. V. Ovchinnikov F. F. Makhin’ko N. V. Gushchina A. V. Stepanov A. I. Medvedev Y. N. Starodubtsev V. A. Kataev V. S. Tsepelev and V. Y. Belozerov ”Effect of ion irradiation on the nanocrystallization and magnetic properties of soft magnetic Fe72. 5Cu1Nb2Mo1. 5Si14B9 alloy” Physics of Metals and Metallography 2017 vol. 118 no. 2 150-157.

  • [20] S. N. Kane M. Shah M. Satalkar K. Gehlot P. K. Kulriya D. K. Avasthi A. K. Sinha S. S. Modak N. L. Ghodke V. R. Reddy and L. K. Varga ”Modification of structural and magnetic properties of soft magnetic multi-component metallic glass by 80 MeV O-16(6+) ion irradiation” Nuclear Instruments and Methods Physics Research B 2016 vol. 379 242-245.

  • [21] ˇ S. Michalík J. Michalíková M. Pavlovič P. Sovák H. P. Liermann and M. Miglierini ”Structural modifications of swift-ionbombarded metallic glasses studied by high-energy X-ray synchrotron radiation” Acta Materialia 2014 vol. 80 309-316.

  • [22] E. Mustafin T. Seidl A. Plotnikov I. Strak M. Pavlovi? M. Miglierini S. Stan?ek A. Fertman and A. Lančok ”Ion irradiation studies of construction materials for high-power accelerators” Radiation Effects and Defects Solids 2009 vol. 164 no.7-8 460-469.

  • [23] I. Bartošová J. Veterníková and V. Slugeň ”Study of candidate materials for new reactor systems using positron annihilation spectroscopy and Barkhausen noise” Nuclear Engineering and Design 2014 vol. 273 376-380.

  • [24] J. Šimeg J. Degmová M. Veterníková F. Šimko M. Pekarčíkov á M. Petriska P. Skarba M. Mikula and Pupala ”Thermal stability study for candidate stainless steels of GEN IV reactors” Applied Surface Science 2016 vol. 387 965-970.

  • [25] J. Veterníková J. Degmová F. Šimko M. Pekarčíková S. Soják and V. Slugeň ”Positron study of steel NF 709 after irradiation and thermal strain” Nuclear Instruments and Methods Physics Research B 2015 vol. 365 309-312.

  • [26] S. Soják J. Šimeg V. Slugeň M. Veterníková M. Petriska and Stacho ”Ion implantations of oxide dispersion strengthened steels” Nuclear Instruments and Methods Physics Research B 2015 vol. 365 305-308.

  • [27] J. Š. Veterníková J. Degmová V. Sabelová M. Petriska and V. Slugeň ”Surface study of radiation damaged oxide dispersion strengthened steels” Applied Surface Science 2014 vol. 312 199-202.

Search
Journal information
Impact Factor


IMPACT FACTOR 2018: 0.636
5-year IMPACT FACTOR: 0.663

CiteScore 2018: 0.88

SCImago Journal Rank (SJR) 2018: 0.200
Source Normalized Impact per Paper (SNIP) 2018: 0.771

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 175 67 2
PDF Downloads 87 40 1