Comparative Electromagnetic and Quasi–Static Simulations of a Shortpulse Propagation along Microstrip Meander Delay Lines with Design Constraints


A numerical analysis of microstrip meander delay lines is considered. Results of quasi-static and electromagnetic simulations are given. It is shown that when increasing a number of turns and proportionally reducing their length, distortions of a pulse signal in the line are reduced. At the same time, despite structure’s electrical width increase, the agreement between the results of quasi-static and electromagnetic analyses is improved. Thus, it is demonstrated that when designing the microstrip meander delay lines with minimal distortions, the quasi-static analysis is relevant.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] WU, R. B.—CHAO, F. L. : Laddering Wave in Serpentine Delay Line, IEEE Trans. Components, Packag. Manuf. Technol. Part B, Adv. Packag 18 (1995), 644–650,, doi:10.1109/96.475270.

  • [2] SHIUE, G. H.—CHAO, C. Y.—WU, R. B. : Guard Trace Design for Improvement on Transient Waveforms and Eye Diagrams of Serpentine Delay Lines, IEEE Trans. Adv. Packag. 33 (2010), 1051–1060, doi:10.1109/TADVP.2010.2064165.

  • [3] BRUCE, A. : Importance and Process of Validation for All Levels of Modeling Problems, in: IEEE Int. Symp. EMC, 2009.

  • [4] TOPSAKAL, E.—VOLAKIS, J. : Finite Element Method for the Accurate Analysis of Delay Line Propagation Characteristics, 2003 IEEE Int. Symp. Electromagn. Compat. 2003. EMC’03., vol. 2, 2003, doi:10.1109/ICSMC2.2003.1429101.

  • [5] KABIRI, A.—HE, Q.—KERMANI, M. H.—RAMAHI, O. M. : Design of a Controllable Delay Line, IEEE Trans. Adv. Packag. 33 (2010), 1080–1087, doi:10.1109/TADVP.2010.2064166.

  • [6] RUBIN, B. J.—SINGH, B. : Study of Meander Line Delay in Circuit Boards, IEEE Trans. Microw. Theory Tech. 48 (2000), 1452–1460, doi:10.1109/22.868994.

  • [7] BHOBE, A. U.—HOLLOWAY, C. L.—PIKET-MAY, M. : Meander Delay Line Challenge Problem: a Comparison using FDTD, FEM and MoM, 2001 IEEE EMC Int. Symp. Symp. Rec. Int. Symp. Electromagn. Compat. (Cat. No.01CH37161), vol. 2, 2001, doi:10.1109/ISEMC.2001.950479.

  • [8] The Finite Integration Technique, (n.d.).

  • [9] GAZIZOV, T. R. : Analytic Expressions for MOM Calculation of Capacitance Matrix of Two Dimensional System of conductors and Dielectrics Having Arbitrarily Oriented Boundaries, 2001 IEEE EMC Int. Symp. Symp. Rec. Int. Symp. Electromagn. Compat. (Cat. No.01CH37161), vol. 1, 2001, doi:10.1109/ISEMC.2001.950576.


Journal + Issues