Diabetic Rethinopathy Screening by Bright Lesions Extraction from Fundus Images

Veronika Hanđsková 1 , Jarmila Pavlovičova 1 , Miloš Oravec 1  and Radoslav Blaško 1
  • 1 Slovak University of Technology in Bratislava, Faculty of Electrical Engineering and Information Technology, Ilkovičova 3, 812 19 Bratislava, Slovakia

Abstract

Retinal images are nowadays widely used to diagnose many diseases, for example diabetic retinopathy. In our work, we propose the algorithm for the screening application, which identifies the patients with such severe diabetic complication as diabetic retinopathy is, in early phase. In the application we use the patient’s fundus photography without any additional examination by an ophtalmologist. After this screening identification, other examination methods should be considered and the patient’s follow-up by a doctor is necessary. Our application is composed of three principal modules including fundus image preprocessing, feature extraction and feature classification. Image preprocessing module has the role of luminance normalization, contrast enhancement and optical disk masking. Feature extraction module includes two stages: bright lesions candidates localization and candidates feature extraction. We selected 16 statistical and structural features. For feature classification, we use multilayer perceptron (MLP) with one hidden layer. We classify images into two classes. Feature classification efficiency is about 93 percent.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1] KAUPPI, T. : Eye Fundus Image Analysis for Automatic Detection of Diabetic Retinopathy, Thesis for the degree of Doctor of Science, Acta Universitatis Lappeenrantaensis 414, Nov 2010.

  • [2] ONG, G. L.-RIPLEY, L. G.-NEWSOM, R. S.-COOPER, M.-CASSWELL, A. G. : Screening for Sight-Threatening Diabetic Retinopathy: Comparison of Fundus Photography with Automated Color Contrast Threshold Test, Am. J. Ophthalmol. 137 No. 3 (2004), 445-452.

  • [3] CIULLA, T. A.-AMADOR, A. G.-ZINMAN, B.-: Diabetic Retinopathy and Diabetic Macular Edema, Diabetes Care 26 (2003), 2653-2664.

  • [4] RANGAYYANN, R. M.-ZHU, X.-AYRES, F. J.-ELLS, A. L. : Detection of the Optic Nerve Head in Fundus Images of the Retina with Gabor Filters and Phase Portrait Analysis, Journal of Digital Imaging 23 No. 4 (2010), 438-453.

  • [5] AQUINO, A.-GEGÚNDEZ-ARIAS, M. E.-MARÍN, D. : Detecting the Optic Disc Boundary in Digital Fundus Images Using Morphological, Edge Detection, and Feature Extraction Techniques, IEEE Transactions onMedical Imaging 29 No. 11 (2010), 1860-1869.

  • [6] BLAŠKO, R.-ORAVEC,M.-PAVLOVIČOVÁ, J.-HANÚSKOVÁ , V.-LEHOCKI, F. : Image Preprocessing for Diagnostics Support in Ophtalmology, EE ˇcasopis pre elektrotechniku a energetiku 17 (2011), 5-8. (Slovak)

  • [7] WALTER, T.-KLEIN, J-C.-MASSIN, P.-ERGINAY, A. : A Contribution of Image Processing to the Diagnosis of Diabetic Retinopathy-Detection of Exudates in Color Fundus Images of the Human Retina, IEEE Transactions on Medical Imaging 21 No. 10 (2002), 1236-1243.

  • [8] HANN, C. E.-REVIE, J. A.-HEWETT, D.-CHASE, J. G.-SHAW, G. M. : Screening for Diabetic Retinopathy Using Computer Vision and Physiological Markers, Journal of Diabetes Science and Technology 3 No. 4 (2009), 819-834.

  • [9] GARCÍA, M.-SÁNCHEZ, C. I.-POZA, J.-LÓPEZ, M. I.-HORNERO, R. : Detection of Hard Exudates in Retinal Images Using a Radial Basis Function Classifier, Annals of Biomedical Engineering 37 No. 7 (2009), 1448-1463.

  • [10] MessidorTechno-VisionProject,2008. http://messidor.crihan.fr/.

  • [11] The MathWorks, Inc. MATLAB Product Documentation. 2011. http://www.mathworks.com/help/techdoc/.

  • [12] FORACCHIA, M.-GRISAN, E.-RUGGERI, A. : Luminosity and Contrast Normalization in Retinal Images, Medical Image Analysis 9 (2004), 179-190.

  • [13] HAYKIN, S. : Neural Networks - A Comprehensive Foundation, Macmillan College Publishing Company, New York, 1994.

OPEN ACCESS

Journal + Issues

Search