Calculation and Measurement of Coil Inductance Profile in Tubular Linear Reluctance Motor and its Validation by Three Dimensional FEM

Ali Mosallanejad 1  and Abbas Shoulaie 1
  • 1 Electrical Engineering Department, Iran University of Science and Technology (IUST), Iran University of Science and Technology, Narmak, Tehran, Iran, PO Box 1684613114

Calculation and Measurement of Coil Inductance Profile in Tubular Linear Reluctance Motor and its Validation by Three Dimensional FEM

This paper reports a study of coil inductance profile in all positions of plunger in tubular linear reluctance motors (TLRMs) with open type magnetic circuits. In this paper, maximum inductance calculation methods in winding of tubular linear reluctance motors are described based on energy method. Furthermore, in order to calculate the maximum inductance, equivalent permeability is measured. Electromagnetic finite-element analysis for simulation and calculation of coil inductance in this motor is used. Simulation results of coil inductance calculation using 3-D FEM with coil current excitation is compared to theoretical and experimental results. The comparison yields a good agreement.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • NASAR, S. A.—BOLDEA, I.: Linear Electrical Motors: Theory, Design, and Practical Application, Prentice Hall, 1987.

  • MARDER, B.: A Coilgun Design Primer, IEEE Trans. Magn. 29 No. 1 (Jan 1993), 701-705.

  • LAITHWAITE, E. R.: A History of Linear Electric Motors, Macmillan, London, UK, 1987.

  • BLAKLEY, J. J.: A Linear Oscillating Ferroresonant Machine, IEEE Trans. Magn. MAG-19 No. 4 (July 1983), 1574-1579.

  • NASAR, S. A.—BOLDEA, I.: Linear Electric Motors, Prentice Hall, Englewood Cliffs, 1987.

  • TOMCZUK, B.—SOBOL, M.: Field Analysis of the Magnetic Systems for Tubular Linear Reluctance Motors, IEEE Trans. Magn. 41, No. 4 (Apr 2005), 1300-1305.

  • MENDRELA, E. A.: Comparison of the Performance of a Linear Reluctance Oscillating Motor Operating under AC Supply with One Under DC Supply, IEEE Transactions on Energy Conversion 14 No. 3 (Sep 1999).

  • BRESIE, D. A.—ANDREWS, J. A.: Design of a Reluctance Accelerator, IEEE Trans. Magn. 27 No. 1 (Jan 1991), 623-627.

  • MENDRELA, E. A.—PUDLOWSKI, Z. J.: Transients and Dynamics in a Linear Reluctance Self-Oscillating Motor, IEEE Trans. on Energy Conversion 7 No. 1 (March 1992).

  • TOMCZUK—SOBOL: A Field-Network of a Linear Oscillating Motor and Its Dynamics Characteristics, IEEE Trans. on Magn. 41 No. 8 (Aug 2005).

  • GRANDI, G.—KAZIMIERCZUK, M. K.—MASSARINI, A.— REGGIANI, U.—SANCINETO, G.: Model of Laminated Iron-Core Inducted for High Frequencies, IEEE Trans. on Magn. 40 No. 4 (July 2004).

  • ALLGILBERLS, L. L.—BROWN, M. D.: Magnetocumulative Generators, Springer-verlag.

  • HAGHMARAM, R.—SHOULAIE, A.—KHANZADEH, M. H.: Parallel Connection of Traveling Wave Tubular Linear Induction Motors, Proc. 3th Int. Conf. on Technical and Physical Problems in Power Engineering, Turkey, 2006, pp. 192-199.

  • THORBORG-KJELD: Power Electronic, Prentice Hall, 1988.

  • FOWLER, C. M.—CAIRD, R. S.—GARN, W. B.: An Introduction to Explosive Magnetic Flux Compression Generators, Los Alamos Report, LA-5890-MS, 1975, pp. 1-7.

  • GROVER, L.: Inductance Calculations — Working Formulas and Tables, Dover, New York, 1962.

  • CHENG, D. K.: Fundamentals of Engineering Electromagnetic, Addison-Wesley, 1993.

  • TUMANSKI, S.: Induction Coil Sensors — a Review, J. Measurement Science and Technology 18 (Jan 2007).


Journal + Issues