Suboptimal Rake Finger Allocation: Performance and Complexity Tradeoffs

Open access

Suboptimal Rake Finger Allocation: Performance and Complexity Tradeoffs

Optimal finger placement improves significantly the performance of RAKE receivers. However, due to its high complexity, it is rarely applied in mobile systems with large channel spread. In this paper, we evaluate the merits of suboptimal finger allocation in terms of performance and complexity. A subset of the RAKE fingers is optimally positioned based on the received signal correlation properties while the rest of them are uniformly distributed within the channel spread. The tradeoffs between performance and complexity of the method are discussed. Results show that optimizing half finger positions lead to similar performance with the full optimization scheme. Finally, comparisons with conventional and optimal receivers exhibit the advantages of the method.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • LI X.—WU D.: Power control and channel allocation for real-time applications in cellular networks Wireless Communications and Mobile Computing 8 No. 6 (2007) 705-713.

  • MATIASKO K.—ZABOVSKY M.: A data replication for mobile environment Journal of Electrical Engineering 59 No. 5 (2008) 277-280.

  • RUPP M.: Video and Multimedia Transmissions over Cellular Networks Analysis Modeling and Optimization in Live 3G Mobile Networks John Wiley & Sons Ltd 2009.

  • CHEN H.-H.: The Next Generation CDMA Technologies John Wiley & Sons Ltd 2007.

  • LEE J. S.—MILLER L. E.: CDMA Systems Engineering Handbook Artech House 1998.

  • PROAKIS J. G.—SALEHI M.: Digital Communications 5-th Edition McGraw-Hill 2007.

  • DONG X.—BEAULIEU N. C.: Optimal maximal ratio-combining with correlated diversity IEEE Communications Lett 6 No. 1 (2002) 22-24.

  • KIM K. J.—KWON S. Y.—HONG E. K.-WHANG K. C.: Effect of tap spacing on the performance of direct-sequence spread spectrum RAKE receiver IEEE Trans. on Communications 486 No. 1 (2000) 1029-1036.

  • BEJJANI E—BOUQIER J.-F—DECACQUERAY B.: Adaptive channel delays selection for WCDMA mobile system Proc. IEEE VTS 50th Vehicular Technology Conference (VTC '99) 1 Fall (1999) 203-207.

  • BALACHANDRAN K.—CHANG K. K.—REGE K. M.: RAKE receiver finger assignment in CDMA terminals with fractionally spaced multipaths Proc. IEEE VTS 50th Vehicular Technology Conference (VTC '99) 1 Fall (1999) 476-481.

  • VEJLGAARD B. N.—MOGENSEN P.—KNUDSEN J. B.: Grouped RAKE finger management principle for wideband CDMA Proc. IEEE VTS 51st Vehicular Technology Conference (VTC '00) 1 (2000) 87-91.

  • BOTTOMLEY G. E.—OTTOSON T.—WANG Y.-P. E.: A generalized RAKE receiver for interference suppression IEEE J. of Selected Areas in Communications 18 No. 8 (2000) 1536-1545.

  • LAU W. C.—ALOUINI M.—SIMON M. K.: Optimum spreadng bandwidth for selective RAKE reception over Rayleigh fading channels IEEE J. of Selected Areas in Communications 19 No. 6 (2001) 1080-1089.

  • LI C.-M.—LI H.-J.: A novel RAKE receiver finger number decision rule IEEE Antennas Wireless Propagation Lett 12 No. 6 (2003) 277-280.

  • BOTTOMLEY G. E.—CAIRNS D. A.—COZZO C.—FULGUHM T. L.—KHAYRALLAH A. S.—INDELL P.—SUNDELIN M.—WANG Y.-P. E.: Advanced receivers for WCDMA terminal platforms and base stations Ericsson Review 2 (2006) 54-58.

  • BALTZIS K. B.—SAHALOS J. N.: On the design of RAKE receivers with non-uniform finger spacing Proc. 5th International Symposium on Communication Systems Networks and Digital Signal Processing (CSNDSP '06) (2006) 486-490.

  • SUI H.—MASRY E.—RAO B. D.: Chip-level DS-CDMA downlink interference suppression with optimized finger placement IEEE Trans. on Signal Processing 54 No. 10 (2006) 3908-3921.

  • BALTZIS K. B.—SAHALOS J. N.: A novel RAKE receiver design for wideband communications Wireless Personal Communications 43 No. 4 (2007) 1603-1624.

  • DAHLMAN E.—PARKVALL S.—SKOLD J.—BEMING P.: 3G Evolution: HSPA and LTE for place Mobile Broadband 2nd Edition Elsevier Ltd 2008.

  • KRISHNA K. M.—MITRA A.—ARDIL C.: A simplified single correlator rake receiver for CDMA communications Proc. of World Academy of Science Engineering and Technology 8 (2005) 106-109.

  • GEZICI S.—CHIANG M.—POOR H. V.—KOBAYASHI H.: Optimal and suboptimal finger selection algorithms for MMSE RAKE receivers in impulse radio ultra-wideband systems EURASIP J. on Wireless Communications and Networking (2006) doi: 10.1155/WCN/2006/84249.

  • KIM B. S.—BAE J.—SONG I.—KIM S. Y.—KWON H.: Optimum and suboptimum rake receivers in impulsive UWB environment IEEE Trans. on Vehicular Technology 55 No. 6 (2006) 1797-1804.

  • CASSIOLI D.—WIN M. Z.—VALATARO F.—MOLISCH A. F.: Low complexity rake receivers in ultra-wideband channels IEEE Trans. on Wireless Communications 6 No. 4 (2007) 1265-1275.

  • JIN H.—SALEHI M.: A new finger placement for the generalized RAKE receiver Proc. 42-nd Annual Conference on Information Sciences and Sysems (CISS '08) (2008) 335-340.

  • BALTZIS K. B.: An efficient finger allocation method for the maximum likelihood RAKE receiver Radioengineering 17 No. 4 (2008) 45-50.

  • JERUCHIM M. C.—BALABAN P.—SHANMUGAN K. S.: Simulation of communications systems: modeling methodology and techniques 2nd Edition Kluwer Academic/Plenum Publishers 20000.

  • STADLER W.: Multicriteria Optimization in Engineering and in the Sciences Plenum Press 1988.

  • ZLOBEC S.: Stable Parametric Programmings Kluwer Academic Publishers 2001.

  • EHRGOTT M.: Multicriteria Optimization Springer 2005.

  • BEN-TAL A.: Characterization of Pareto and lexicographic optimal solutions Proc. 3rd Conference on Multiple Criteria Decision Making Theory and Application Springer Verlang 1979 1-11.

  • GOLDBERG D. E.: Genetic Algorithms in Search Optimization and Machine Learning Addison-Wesley 1989.

  • COELLO C. A. C.—LAMONT G. B.—VANVELDHUIZEN D. A.: Evolutionary Algorithms for Solving Multi-Objective Problems 2-nd Edition Springer 2007.

  • AWADALLAH M. A.—BAYOUMI E. H. E.—SOLIMAN H. M.: Adaptive deadbeat controllers for brushless drives using PSO and ANFIS techniques Journal of Electrical Engineering 60 No. 1 (2009) 3-11.

  • ABRARDO A.: Noncoherent MLSE detection of M-DPSK for DS-CDMA wireless system IEEE Trans. on Vehicular Technology 50 No. 4 (2001) 900-909.

  • KIM J.—KIM I.—RO S.—HOND D.: Effects of multipath diversity on adaptive QAM in frequency selective Rayleigh fading channels IEEE Communications Lett. 6 No. 9 (2002) 364-366.

  • HAMILA R.—LOHAN E. S.—RENFORS M.: Subchip multipath delay estimation for downlink WCDMA system based on Teager-Kaiser operator IEEE Communications Lett. 7 No. 1 (2003) 1-3.

  • ABRARDO A.: Noncoherent MLSE in DS-CDMA wireless systems with antenna arrays IEEE Trans. on Vehicular Technology 52 No. 6 (2003) 1435-1446.

  • GOLSMITH A.: Wireless Communications Cambridge University Press 2005.

  • 3RD GENERATION PARTHENRSHIP PROJECT TSG RAN WG4 UE Radio Transmission and Reception (FDD) version 2.0 1999.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.636
5-year IMPACT FACTOR: 0.663

CiteScore 2018: 0.88

SCImago Journal Rank (SJR) 2018: 0.200
Source Normalized Impact per Paper (SNIP) 2018: 0.771

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 229 139 3
PDF Downloads 91 61 2