Bankruptcy Practice in Countries of Visegrad Four

Abstract

Numerous economists and analysts from all over the world have been trying to find an appropriate method to assess company health and to predict its eventual financial distress for many years. No economy is a small isolated subject, and the bankruptcy of a company can cause through its stakeholders′ significant impact on the sustainable economic development. Otherwise, companies are very complicated entities, and it is not a simple task to estimate company’s future development. Together with the best-known Z-Score model of bankruptcy prediction developed by Altman, numerous models worldwide that are based on different methodologies have been developed. We assume that individual state’s economy has major influence on the final form of these models as well as there are several common characteristics between Slovak economy and economy of countries of Visegrad Four. Therefore, we applied chosen bankruptcy prediction models developed in countries of Visegrad Four on the set of Slovak companies and validated their prediction ability in specific condition of the Slovak economy. On the basis of the provided calculations, we compared gained results with the prediction capability of other popular prediction models also applied on the data set of Slovak companies. Through this, we pointed out the importance of the development of unique bankruptcy prediction model, which will be constructed in the specific condition of individual countries, and highlighted the weak forecasting ability of foreign models.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Achim, M.V., Mare, C., & Borlea, S.N. (2012). A statistical model of financial risk bankruptcy applied for Romanian manufacturing industry. International Conference on Emerging Markets Queries in Finance and Business, Conference Proceedings, 132-137.

  • Adamko, P., & Svabova, L. (2016). Prediction of the risk of bankruptcy of Slovak companies. Proceedings of 8th International Scientific Conference Managing and Modelling of Financial Risks, Conference proceedings, 15-20.

  • Agrawal, K., & Maheshwari, Y. (2016). Predicting financial distress: revisiting the option-based model. South Asian Journal of Global Business Research, 5(2), 268-284

  • Alaminos, D., delCastillo, A., & Fernandez, M.A. (2016). A Global Model for Bankruptcy Prediction. Plus One, 11(11), e0166693.

  • Altman, E. I. (1968). Financial Ratios, Discriminant Analysis and The Prediction of Corporate Bankruptcy. The Journal of Finance, 23(4), 589-609.

  • Altman, E. I., Iwanicz-Drozdowska, M., Laitinen, E.K., & Suvas, A. (2014). Distressed Firm and Bankruptcy Prediction in an International Context: A Review and Empirical Analysis of Altman's Z-Score Model. 1-47. [Accessed 10.04.2017]. Available from Internet: https://poseidon01.ssrn.com/delivery.php?ID=529106093087075013127067084001013126029069029053059024023104086010119071109096111023033010062037057098105109087086121108006005005049053081003084104122116117114069001049002007025124115086117073017084097088069083065010109072000001074086091124086118014066&EXT=pdf

  • Amendola, A, Restaino, M., & Sensini, L. (2013). Corporate Financial Distress And Bankruptcy: A Comparative Analysis. In The 6th Annual Euromed Conference Of The Euromed-Academy-Of-Business. Conference proceedings, 107-120.

  • Barreda, A.A., Kageyama, Y., Singh, D., & Zubieta, S. (2017). Hospitality Bankruptcy in United States of America: A Multiple Discriminant Analysis-Logit Model Comparison. Journal of Quality Assurance in Hospitality & Tourism, 18(1), 86-106.

  • Beaver, W. (1966). Financial Ratios as Predictors of Failure, Empirical Research in Accounting: Selected Studies. Supplement to the Journal of Accounting Research, (4), 71-111.

  • Binkert, Ch. H. (1999) Fruherkennung von Unternehmenskrisen mit Hilfe geeigneter Methoden im deutschen und slowakischen Wirtschaftsraum. Dissertation.

  • Chrastinova, Z. (1998). Metódy hodnotenia ekonomickej bonity a predikcie finančnej situácie poľnohospodárskych podnikov. Bratislava: VÚEPP.

  • Davydenko, S., & Franks, Jr. (2008) Do Bankruptcy Codes Matter? A Study of Defaults in France, Germany, and the UK. Journal of Finance, 63(2), 797-1022.

  • Dichev, I.D. (1998). Is The Risk Of Bankruptcy A Systematic Risk? Journal of Finance, 53(3), 1131-1147.

  • Edmister, R.O. (1972). Financial Ratios as Discriminant Predictors of Small Business Failure. Journal of Finance, 27(1), 1-178.

  • Fitzpatrick, P.J. (1932). A Comparison of Ratios of Successful Industrial Enterprises with Those of Failed Firms, Certified Public Accountant, (10), 598-605.

  • Gajdka J., & Stos, D. (1996). Wykorzystanie analizy dyskryminacyjnej w ocenie kondycji finansowej przedsiębiorstw, Materiały z Ogólnopolskiej Konferencji Naukowej „Restrukturyzacja w procesie przekształceń i rozwoju przedsiębiorstw”, Wydawnictwo Akademii Ekonomicznej w Krakowie, Wydawnictwo Akademii Ekonomicznej, Kraków, Conference proceedings, 56-65.

  • Georgescu, V. (2017). Using genetic algorithms to evolve type-2 fuzzy logic systems for predicting bankruptcy. Kybernetes, 46(1), 142-156.

  • Gruszczynski, M. (2004) Financial distress of companies in Poland. International Advances in Economic Research, 10(4), 249-256.

  • Gurcik, L. (2002). G-index - the financial situation prognosis method of agricultural enterprises. Agricultural Economics, 48(8), 373-378.

  • Hamrol, M., Czajka, B., & Piechocki, M. (2004). Company bankruptcy - a discriminant analysis model - Upadłość przedsiębiorstwa - model analizy dyskryminacyjnej. Przegląd Organizacji, (6), 35-39.

  • Hurtosova, J. (2009). Konštrukcia ratingového modelu, nástroja hodnotenia úverovej spôsobilosti podniku, dissertation thesis, Economic University in Bratislava, Bratislava.

  • Jones, S., Johnstone, D., & Wilson, R. (2017). Predicting Corporate Bankruptcy: An Evaluation of Alternative Statistical Frameworks. Journal of Business & Accounting, 44(1-12), 3-34.

  • Kasgari, A.A., Divsalar, M., Javid, M.R., & Ebrahimian, S.J. (2013). Prediction of bankruptcy Iranian corporations through artificial neural network and Probit-based analyses. Neural Computing & Applications, 23(3-4), 927-936.

  • Kirkos, E. (2015). Assessing Methodologies for Intelligent Bankruptcy Prediction. Artificial Intelligence Review, 43(1), 83-123.

  • Kliestik, T., & Majerova, J. (2015). Selected issues of selection of significant variables in the prediction models. Proceedings of 10th international scientific conference Financial management of firms and financial institutions, Conference proceedings, 537-543.

  • Kumar, P., & Ravi, V. (2007). Bankruptcy Prediction In Banks And Firms Via Statistical And Intelligent Techniques - A Review, European Journal Of Operational Research, 180(1), 1-28.

  • Mączynska, E., (2004). Globalizacja ryzyka a systemy wczesnego ostrzegania przed upadłością przedsiębiorstwa. Upadłość przedsiębiorstw w Polsce w latach 1990-2003. Teoria i praktyka. Poznań.

  • Michaluk, K. (200). Zastosowania metod ilosciowych w procesie przewidywania zagrozenia upadloscia przedsiebiorstwa. doctoral dissertation, Uniwersytet Szczeciński, Szszecin.

  • Mousavi, M.M., Ouenniche, J., & Xu, B. (2015). Performance evaluation of bankruptcy prediction models: An orientation-free super-efficiency DEA-based framework. International Review of Financial Analysis, (42), 64-75.

  • Neumaier, I., & Neumaierová, I. (1995). Zkuste spočítat svůj INDEX IN 95. Terno, (5).

  • Neumaier, I., & Neumaierová, I. (1999). Finanční analýza INFA - Aplikace na energetiku. Sektorové a odvětvové analýzy Aspekt Energetika, 4(1), 32-75.

  • Neumaier, I., & Neumaierová, I. (2001). Analýza tvorby hodnoty - aplikace finanční analýzy INFA. Sektorové a odvětvové analýzy Aspekt 8/V Investiční strojírenství, 23-39.

  • Neumaier, I., & Neumaierová, I. (2005). Index IN 05. Proceeding of the conference „European financial systems”, Conference proceedings, 143-148.

  • Ohlson, J.A. (1980) Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research, 18(1), 109-131.

  • Onofrei, M., & Lupu, D. (2014). The Modeling of Forecasting the Bankruptcy Risk in Romania. Economic Computation and Economic Cybernetics Studies and Research, 48(3), 197-215.

  • Premachandra, I.M., Chen, Y., & Watson, J. (2011). DEA as a tool for predicting corporate failure and success: A case of bankruptcy assessment. Omega - International Journal of Management Science, 39(6), 620-626.

  • Prusak, B. (2004). How to recognise a potential bankrupt? Assessment of company insolvency risk, based on multiple discriminant analysis. [Accessed 10.04.2017]. Available from Internet: http://www1.zie.pg.gda.pl/~pb/jrpb.pdf

  • Springate, G.L.V. (1978). Predicting the possibility of failure in a Canadian firm. Unpublished MBA Res. project, Simon Fraser Univ., 42-47.

  • Svabova, L., & Durica, M. (2016). Korelačná analýza prediktorov použitých v bankrotných predikčných modeloch na Slovensku. Ekonomicko manazerske spektrum, 10(1), 2-11.

  • Svabova, L., & Kral, P. (2016). Selection of predictors in bankruptcy prediction models for Slovak companies. Proceedings of 10th International days of statistics and economics, Conference proceedings, 1759-1768.

  • Taffler, R.J., & Tseung, M. (1984). The Audit Going-Concern. Practise. Accountant´s Magazine, (88), 263-269.

  • Tsai, C.F., Hsu, Y.F., & Yen, D.C. (2014). A comparative study of classifier ensembles for bankruptcy prediction. Applied Soft Computing, (24), 977-984.

  • Virag, M., & Hajdu, O. (1996) Pénzügyi mutatószámokon alapuló csõdmodellszámítások. Bankszemle XV, (5), 42-53.

  • Virag, M., & Nyitrai, T. (2014). Is There A Trade-Off Between The Predictive Power And The Interpretability Of Bankruptcy Models? The Case Of The First Hungarian Bankruptcy Prediction Model. Acta Oeconomica, 64(4), 419-440.

  • Wierzba, D. (2000). Wczesne wykrywanie przedsiębiorstw zagrożonych upadłością na podstawie analizy wskaźników fi nansowych - teoria i badania empiryczn e. „Zeszyty Naukowe” 9, Wyd. Wyższej Szkoły Ekonomiczno-Informacyjnej w Warszawie, Warszawa.

  • Wrzosek, M., & Ziemba, A. (2009). Construction of a rating based on a bankruptcy prediction model. Credit Research Center, The University of Edinburgh, 1-19, [Accessed 08.04.2017]. Available from Internet: http://www.business-school.ed.ac.uk/crc/conferences/conference-archive?a=45910

  • Zalai, K. (2000). Special Aspects of Forecasting the financial development of Slovak companies. BIATEC, 8(1), 12- 14.

  • Zhao, D., Huang, C.Y., Wei, Y., Yu, F.H., Wang, M.J., & Chen, H.L. (2017). An Effective Computational Model for Bankruptcy Prediction Using Kernel Extreme Learning Machine Approach. Computational Economics, 49(2), 325-341.

  • Zieba, M., Tomczak, S.K., & Tomczak, J.M. (2016). Ensemble boosted trees with synthetic features generation in application to bankruptcy prediction. Expert Systems with Applications, (58), 93-101.

  • Zmijewski, M. E. (1984) Methodological issues related to the estimation of financial distress prediction models. Journal of Accounting Research, (22), 59-82.

OPEN ACCESS

Journal + Issues

Search