Monitoring Acute Myocardial Infarction Complicated with Cardiogenic Shock — from the Emergency Room to Coronary Care Units

Open access

Abstract

Cardiogenic shock remains the leading cause of death in patients hospitalized for acute myocardial infarction, despite many advances encountered in the last years in reperfusion, mechanical, and pharmacological therapies addressed to stabilization of the hemodynamic condition of these critical patients. Such patients require immediate initiation of the most effective therapy, as well as a continuous monitoring in the Coronary Care Unit. Novel biomarkers have been shown to improve diagnosis and risk stratification in patients with cardiogenic shock, and their proper use may be especially important for the identification of the critical condition, leading to prompt therapeutic interventions. The aim of this review was to evaluate the current literature data on complex biomarker assessment and monitoring of patients with acute myocardial infarction complicated with cardiogenic shock in the Coronary Care Unit.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Reynolds HR Hochman JS. Cardiogenic shock: current concepts and improving outcomes. Circulation. 2008;117:686-697. doi:10.1161/CIRCULATIONAHA.106.613596.

  • 2. Hochman JS. Cardiogenic shock complicating acute myocardial infarction: expanding the paradigm. Circulation. 2003;107:2998-3002. doi: 10.1161/01.CIR.0000075927.67673.F2.

  • 3. Khalid L Dhakam S. A Review of Cardiogenic Shock in Acute Myocardial Infarction. Current Cardiology Reviews. 2008;4:34-40. doi: 10.2174/157340308783565456.

  • 4. Hochman JS Sleeper LA Webb JG et al. Early revascularization in acute myocardial infarction complicated by cardiogenic shock. SHOCK Investigators. Should we emergently revascularize occluded coronaries for cardiogenic shock. N Engl J Med. 1999;341:625-34. doi: 10.1056/NEJM199908263410901.

  • 5. Fox KA Steg PG Eagle KA et al. Decline in rates of death and heart failure in acute coronary syndromes 1999-2006. JAMA. 2007; 297:1892-1900. doi:10.1001/jama.297.17.1892.

  • 6. Goldberg RJ Spencer FA Gore JM Lessard D Yarzebski J. Thirty Year Trends (1975-2005) in the Magnitude Management and Hospital Death Rates Associated With Cardiogenic Shock in Patients with Acute Myocardial Infarction: A Population-Based Perspective. Circulation. 2009;119:1211-1219. doi:10.1161/CIRCULATIONAHA.108.814947.

  • 7. Babaev A Frederick PD Pasta DJ et al. Trends in management and outcomes of patients with acute myocardial infarction complicated by cardiogenic shock. JAMA. 2005; 294:448-454. doi: 10.1001/jama.294.4.448.

  • 8. TRIUMPH Investigators Alexander JH Reynolds HR et al. Effect of tilarginine acetate in patients with acute myocardial infarction and cardiogenic shock: the TRIUMPH randomized controlled trial. JAMA. 2007;297:1657-1666. doi: 10.1001/jama.297.15.joc70035.

  • 9. Werdan K Ruß M Buerke M et al. Cardiogenic shock due to myocardial infarction: diagnosis monitoring and treatment: a German-Austrian S3 Guideline. Dtsch Arztebl Int. 2012;109:343-51. doi: 10.3238/arztebl.2012.0343.

  • 10. Reynolds HR Hochman JS. Cardiogenic shock: current concepts and improving outcomes. Circulation. 2008;117:686-697. doi: 10.1161/CIRCULATIONAHA.106.613596.

  • 11. Bartling B Milting H Schumann H et al. Myocardial gene expression of regulators of myocyte apoptosis and myocyte calcium homeostasis during hemodynamic unloading by ventricular assist devices in patients with end-stage heart failure. Circulation. 1999;100:216-223. https://doi.org/10.1161/01.CIR.100.suppl_2.II-216.

  • 12. Li YY Feng Y McTiernan CF et al. Downregulation of matrix metalloproteinases and reduction in collagen damage in the failing human heart after support with left ventricular assist devices. Circulation. 2001;104:1147-1152.

  • 13. Delgado R 3rd Radovancevic B Massin EK Frazier OH Benedict C. Neurohormonal changes after implantation of a left ventricular assist system. ASAIO J. 1998;44:299-302.

  • 14. Shah NR Bieniarz MC Basra SS et al. Serum biomarkers in severe refractory cardiogenic shock. JACC Heart Fail. 2013;1:200-6. doi: 10.1016/j.jchf.2013.03.002.

  • 15. Chiotoroiu A Buicu F Benedek T. Recent advances in biomarker discovery – from serum to imaging-based biomarkers for a complex assessment of heart failure patients. Journal of Interdisciplinary Medicine. 2016;1:125-130. doi: 10.1515/jim-2016-0045.

  • 16. Meredith AJ Dai DLY Chen V et al. Circulating biomarker responses to medical management vs. mechanical circulatory support in severe inotrope-dependent acute heart failure. Esc Heart Failure. 2016;3:86-96. doi:10.1002/ehf2.12076.

  • 17. Duma RJ Siegel AL. Serum creatinine phosphokinase in acute myocardial infarction: diagnostic value. Arch Intern Med. 1965;115:443-51.

  • 18. Pierce GF Jaffe AS. Increased creatine kinase MB in the absence of acute myocardial infarction. Clin Chem. 1986;32:2044-51.

  • 19. Al-Hadi HA Fox KA. Cardiac Markers in the Early Diagnosis and Management of Patients with Acute Coronary Syndrome. Sultan Qaboos University Medical Journal. 2009;9:231-246.

  • 20. Saenger AK Jaffe AS. The use of biomarkers for the evaluation and treatment of patients with acute coronary syndromes. Med Clin North Am. 2007;91:657-681. doi: 10.1016/j.mcna.2007.04.001.

  • 21. Irvin RG Cobb FR Roe CR. Acute myocardial infarction and MB creatine phosphokinase. Relationship between onset of symptoms of infarction and appearance and disappearance of enzyme. Arch Intern Med. 1980;140:329-334. doi:10.1001/archinte.1980.00330150043014.

  • 22. Gibler WB Young GP Hedges JR et al. Acute myocardial infarction in chest pain patients with non-diagnostic ECGs: serial CK-MB sampling in the emergency department. The Emergency Medicine Cardiac Research Group. Ann Emerg Med. 1992;21:504-512.

  • 23. Daubert MA Jeremias A. The utility of troponin measurement to detect myocardial infarction: review of the current findings. Vasc Health Risk Manag. 2010;6:691-699.

  • 24. del Val Martin D Sanmartin Fernandez MS Zamorano Gomez JL. Biomarkers in acute coronary syndrome. IJC Metabolic & Endocrine. 2015;8:20-23. https://doi.org/10.1016/j.ijcme.2015.04.003

  • 25. Tucker JF Collins RA Anderson AJ Hauser J Kalas J Apple FS. Early diagnostic efficiency of cardiac troponin I and Troponin T for acute myocardial infarction. Acad Emerg Med. 1997;4:13-21.

  • 26. Vaughan L. Biomarkers in acute medicine. Medicine. 2013;41:136-141. doi: http://dx.doi.org/10.1016/j.mpmed.2013.01.001.

  • 27. Tanindi A Cemri M. Troponin elevation in conditions other than acute coronary syndromes. Vasc Health Risk Manag. 2011;7:597-603. doi:10.2147/VHRM.S24509.

  • 28. Gunnewiek JM Van Der Hoeven JG. Cardiac troponin elevations among critically ill patients. Curr Opin Crit Care. 2004;10:342-346.

  • 29. Peacock WF 4th De Marco T Fonarow GC et al. Cardiac Troponin and Outcome in Acute Heart Failure. N Engl J Med. 2008;358:2117-2126. doi: 10.1056/NEJMoa0706824.

  • 30. Sato Y Yamada T Taniguchi T et al. Persistently increased serum concentrations of cardiac troponin T in patients with idiopathic dilated cardiomyopathy are predictive of adverse outcomes. Circulation. 2001;103:369-74.

  • 31. Pascual-Figal DA Manzano-Fernandez S Boronat M et al. Soluble ST2 high-sensitivity troponin T- and N-terminal pro-B-type natriuretic peptide: complementary role for risk stratification in acutely decompensated heart failure. Eur J Heart Fail. 2011;13:718-725. doi: 10.1093/eurjhf/hfr047.

  • 32. Jolly SS Shenkman H Brieger D et al. Quantitative troponin and death cardiogenic shock cardiac arrest and new heart failure in patients with non-ST-segment elevation acute coronary syndromes (NSTE ACS): insights from the Global Registry of Acute Coronary Events. Heart. 2011;97:197-202. doi: 10.1136/hrt.2010.195511.

  • 33. Iqbal MP Kazmi KA Mehboobali N Rahbar A. Myoglobin – a marker of reperfusion and a prognostic indicator in patients with acute myocardial infarction. Clin Cardiol. 2004;27:144-50.

  • 34. Alhadi HA Fox KA. Do we need additional markers of myocyte necrosis: the potential value of heart fatty-acid-binding protein. QJM. 2004;97:187-198.

  • 35. Colli A Josa M Pomar JL Mestres CA Gherli T. Heart fatty acid binding protein in the diagnosis of myocardial infarction: where do we stand today? Cardiology. 2007;108:4-10. doi: 10.1159/000095594.

  • 36. Alansari SE Croal BL. Diagnostic value of heart fatty acid binding protein and myoglobin in patients admitted with chest pain. Ann Clin Biochem. 2004;41:391-396. doi: 10.1258/0004563041731565.

  • 37. Ilva T Lund J Porela P et al. Early markers of myocardial injury: cTnI is enough. Clin Chim Acta. 2009;400:82-85. doi: 10.1016/j.cca.2008.10.005.

  • 38. Manzano-Fernandez S Januzzi JL Pastor-Perez FJ et al. Serial monitoring of soluble interleukin family member ST2 in patients with acutely decompensated heart failure. Cardiology. 2012;122:158-166. doi: 10.1159/000338800.

  • 39. Caselli C D'Amico A Ragusa R et al. IL-33/ST2 pathway and classical cytokines in end-stage heart failure patients submitted to left ventricular assist device support: a paradoxic role for inflammatory mediators? Mediators Inflamm. 2013;2013:498703. doi: 10.1155/2013/498703.

  • 40. Meredith AJ Dai DLY Chen V et al. Circulating biomarker responses to medical management vs. mechanical circulatory support in severe inotrope-dependent acute heart failure. Esc Heart Failure. 2016;3:86-96. doi:10.1002/ehf2.12076.

  • 41. Yasue H Yoshimura M Sumida H et al. Localization and mechanism of secretion of B-type natriuretic peptide in comparison with those of A-type natriuretic peptide in normal subjects and patients with heart failure. Circulation. 1994;90:195-203.

  • 42. Richards AM Nicholls MG Espiner EA et al. B-type natriuretic peptides and ejection fraction for prognosis after myocardial infarction. Circulation. 2003;107:2786-2792. doi: 10.1161/01.CIR.0000070953.76250.B9.

  • 43. de Lemos JA Morrow DA Bentley JH et al. The prognostic value of B-type natriuretic peptide in patients with acute coronary syndromes. N Engl J Med. 2001;345:1014-1021. doi: 10.1056/NEJMoa011053.

  • 44. Khan SQ Dhillon OS O’Brien RJ et al. C-terminal provasopressin (copeptin) as a novel and prognostic marker in acute myocardial infarction: Leicester Acute Myocardial Infarction Peptide (LAMP) study. Circulation. 2007;115:2103-2110. doi: 10.1161/CIRCULATIONAHA.106.685503.

  • 45. Reichlin T HochholzerW Stelzig C et al. Incremental value of copeptin for rapid rule out of acute myocardial infarction. J Am Coll Cardiol. 2009;54:60-68. doi:10.1016/j.jacc.2009.01.076.

  • 46. Shpektor A. Cardiogenic shock: the role of inflammation. Acute Card Care. 2010;12:115-118. doi: 10.3109/17482941.2010.523705.

  • 47. Kohsaka S Menon V Lowe AM et al. Systemic inflammatory response syndrome after acute myocardial infarction complicated by cardiogenic shock. Arch Intern Med. 2005;165:1643-1650. doi: 10.1001/archinte.165.14.1643.

  • 48. Pudil R Krejsek J Pidrman V Gregor J Tichy M Bures J. Inflammatory response to acute myocardial infarction complicated by cardiogenic shock. Acta Medica. 2001;44:149-151.

  • 49. Geppert A Dorninger A Delle-Karth G Zorn G Heinz G Huber K. Plasma concentrations of interlukin-6 organ failure vasopressor support and successful revascularization in predicting 30-day mortality of patients with cardiogenic shock complicating acute myocardial infarction. Crit Care Med. 2006;34:2035-2042. doi: 10.1097/01.CCM.0000228919.33620.D9.

  • 50. Theroux P Armstrong PW Mahaffey KW et al. Prognostic significance of blood markers of inflammation in patients with ST-elevation myocardial infarction undergoing primary angioplasty and effects of pexelizumab a C5 inhibitor: A substudy of the COMMA trial. Eur Heart J. 2005:26;1964-1970. doi:10.1093/eurheartj/ehi292.

  • 51. Mueller C Buettner HJ Hodgson JM et al. Inflammation and long-term mortality after non-ST elevation acute coronary syndrome treated with a very early invasive strategy in 1042 consecutive patients. Circulation. 2002;105:1412-1415.

  • 52. Schiele F Meneveau N Seronde MF et al. C-reactive proteinimproves risk prediction in patients with acute coronary syndromes. Eur Heart J. 2010;31:290-297. doi:10.1093/eurheartj/ehp273.

  • 53. Meijers WC van der Velde AR de Boer RA. The ARCHITECT galectin-3 assay: comparison with other automated and manual assays for the measurement of circulating galectin-3 levels in heart failure. Expert Rev Mol Diagn. 2014;14:257-266. doi: 10.1586/14737159.2014.892421.

  • 54. Giannitsis E Katus HA. Troponins and high-sensitivity troponins as markers of necrosis in CAD and heart failure. Herz. 2009;34:600-606. doi: 10.1007/s00059-009-3306-6.

  • 55. Daniels LB Bayes-Genis A. Using ST2 in cardiovascular patients: a review. Future Cardiol. 2014;10:525-539. doi: 10.2217/fca.14.36.

  • 56. De Berardinis B Gaggin HK Magrini L et al. Comparison between admission natriuretic peptides NGAL and sST2 testing for the prediction of worsening renal function in patients with acutely decompensated heart failure. Clin Chem Lab Med. 2014;53:613-621. http://dx.doi.org/10.1515/cclm-2014-0191.

  • 57. Anand IS Latini R Florea VG et al. C-Reactive Protein in Heart Failure Prognostic Value and the Effect of Valsartan. Circulation. 2005;112:1428-1434. doi: 10.1161/CIRCULATIONAHA.104.508465.

  • 58. Ribeiro DRP Ramos AM Vieira PL et al. High-Sensitivity C-Reactive Protein as a Predictor of Cardiovascular Events after ST-Elevation Myocardial Infarction. Arquivos Brasileiros de Cardiologia. 2014;103:69-75. doi:10.5935/abc.20140086.

  • 59. Yip HK Hang CL Fang CY et al. Level of high-sensitivity C-reactive protein is predictive of 30-day outcomes in patients with acute myocardial infarction undergoing primary coronary intervention. Chest. 2005;127:803-808. doi: 10.1378/chest.127.3.803.

  • 60. Magdalen R Hertz I Merlon H Weiner P Mohammedi I Robert D. The relation between preprocedural C-reactive protein levels and early and late complications in patients with acute myocardial infarction undergoing interventional coronary angioplasty. Clin Cardiol. 2004;27:163-168.

  • 61. Karpiński L Płaksej R Kosmala W Witkowska M. Serum levels of interleukin-6 interleukin-10 and C-reactive protein in relation to left ventricular function in patients with myocardial infarction treated with primary angioplasty. Kardiol Pol. 2008;66:1279-1285.

  • 62. Matsubara J Sugiyama S Nozaki T et al. Incremental Prognostic Significance of the Elevated Levels of Pentraxin 3 in Patients With Heart Failure With Normal Left Ventricular Ejection Fraction. J Am Heart Assoc. 2014;3:1-11. doi:10.1161/JAHA.114.000928.

  • 63. Guo R Li Y Wen J Li W Xu Y. Elevated plasma level of pentraxin-3 predicts in-hospital and 30-day clinical outcomes in patients with non-ST-segment elevation myocardial infarction who have undergone percutaneous coronary intervention. Cardiology. 2014;129:178-188. doi: 10.1159/000364996.

  • 64. Latini R Maggioni AP Peri G et al. Prognostic significance of the long pentraxin PTX3 in acute myocardial infarction. Circulation. 2004;110:2349-2354. doi: 10.1161/01.CIR.0000145167.30987.2E.

  • 65. Mallick A Lanuzzi JL. Biomarkers in acute heart failure. Rev Esp Cardiol. 2015;68:514-525. doi: 10.1016/j.rec.2015.02.009.

  • 66. Bayes-Genis A Ordonez-Llanos J. Multiple biomarker strategies for risk stratification in heart failure. Clin Chim Acta. 2015;443:120-125. doi: 10.1016/j.cca.2014.10.023.

  • 67. De Antonio M Lupon J Galan A Vila J Urrutia A Bayes-Genis A. Combined use of high-sensitivity cardiac troponin T and N-terminal pro-B type natriuretic peptide improves measurements of performance over established mortality risk factors in chronic heart failure. Am Heart J. 2012;163:821-828. doi: 10.1016/j.ahj.2012.03.004.

  • 68. Maisel AS Mueller C Fitzgerald R et al. Prognostic utility of plasma neutrophil gelatinase-associated lipocalin in patients with acute heart failure: the NGAL EvaLuation Along with B-type NaTriuretic Peptide in acutely decompensated heart failure (GALLANT) trial. Eur J Heart Fail. 2011;13:846-851. doi: 10.1093/eurjhf/hfr087.

  • 69. Holmes JW Borg TK Covell JW. Structure and mechanics of healing myocardial infarcts. Annu Rev Biomed Eng. 2005;7:223-253. doi:10.1146/annurev.bioeng.7.060804.100453.

  • 70. van Kimmenade RR Januzzi JL Jr Ellinor PT et al. Utility of amino-terminal pro-brain natriuretic peptide galectin-3 and apelin for the evaluation of patients with acute heart failure. J Am Coll Cardiol. 2006;48:1217-1224. doi: 10.1016/j.jacc.2006.03.061.

  • 71. Bayes-Genis A Ordonez-Llanos J. Multiple biomarker strategies for risk stratification in heart failure. Clin Chim Acta. 2015;443:120-125. doi: 10.1016/j.cca.2014.10.023.

  • 72. Ky B French B Levy WC et al. Multiple biomarkers for risk prediction in chronic heart failure. Circ Heart Fail. 2012;5:183-190. doi: 10.1161/CIRCHEARTFAILURE.111.965020.

  • 73. Daniels LB Bayes-Genis A. Using ST2 in cardiovascular patients: a review. Future Cardiol. 2014;10:525-539. doi: 10.2217/fca.14.36.

  • 74. de Boer RA Lok DJ Jaarsma T et al. Predictive value of plasma galectin-3 levels in heart failure with reduced and preserved ejection fraction. Ann Med 2011;43:60-68. doi: 10.3109/07853890.2010.538080.

  • 75. Singh RB Dandekar SP Elimban V Gupta SK Dhalla NS. Role of proteases in the pathophysiology of cardiac disease. Mol Cell Biochem. 2004;263:241-256.

  • 76. Ali MA Schulz R. Activation of MMP-2 as a key event in oxidative stress injury to the heart. Front Biosci (Landmark Ed). 2009;14:699-716.

  • 77. Ahmed SH Clark LL Pennington WR et al. Matrix metalloproteinases/tissue inhibitors of metalloproteinases: relationship between changes in proteolytic determinants of matrix composition and structural functional and clinical manifestations of hypertensive heart disease. Circulation 2006;113:2089-2096. doi: 10.1161/CIRCULATIONAHA.105.573865.

  • 78. Krum H Elsik M Schneider HG et al. Relation of peripheral collagen markers to death and hospitalization in patients with heart failure and preserved ejection fraction: results of the I-PRESERVE collagen substudy. Circ Heart Fail. 2011:4:561-568. doi:10.1161/CIRCHEARTFAILURE.110.960716.

  • 79. Rao PK Toyama Y Chiang HR et al. Loss of cardiac microRNAmediated regulation leads to dilated cardiomyopathy and heart failure. Circ Res. 2009;105:585-594. doi:10.1161/CIRCULATIONAHA.105.573865.

  • 80. Wang Y Pan X Fan Y et al. Dysregulated expression of microRNAs and mRNAs in myocardial infarction. Am J Transl Res. 2015;7:2291-2304.

  • 81. Stanton LW Garrard LJ Damm D et al. Altered patterns of gene expression in response to myocardial infarction. Circ Res. 2000;86:939-945.

  • 82. Kiliszek M Burzynska B Michalak M et al. Altered gene expression pattern in peripheral blood mononuclear cells in patients with acute myocardial infarction. PLoS One. 2012;7:e50054. doi: 10.1371/journal.pone.0050054.

  • 83. Drew BJ Califf RM Funk M et al. Practice Standards for Electrocardiographic Monitoring in Hospital Settings: An American Heart Association Scientific Statement From the Councils on Cardiovascular Nursing Clinical Cardiology and Cardiovascular Disease in the Young: Endorsed by the International Society of Computerized Electrocardiology and the American Association of Critical Care Nurses. Circulation. 2004;110:2721-2746. doi: 10.1161/01.CIR.0000145144.56673.59.

  • 84. Stevenson RN Marchant BG Ranjadayalan K Uthayakumar S Timmis AD. Holter ST monitoring early after acute myocardial infarction: mechanisms of ischaemia in patients treated by thrombolysis. Br Heart J. 1993;70:433-437.

  • 85. Johanson P Jernberg T Gunnarsson G Lindahl B Wallentin L Dellborg M. Prognostic value of ST segment resolution when and what to measure. Eur Heart J. 2003;24:337-345. doi: https://doi.org/10.1016/S0195-668X(02)00739-X.

  • 86. Flanders SA. ST Segment Monitoring: Putting Standards Into Practice. AACN Adv Crit Care. 2007;18:275-284.

  • 87. Leung JM Voskanian A Bellows AM. Automated electrocardiograph ST segment trending monitors: accuracy in detecting myocardial ischemia. Anesth Analg. 1998;87:4-10.

  • 88. Shanewise J. How to Reliably Detect Ischemia in the Intensive Care Unit and Operating Room. Semin Cardiothorac Vasc Anesth. 2006;10:101-109. doi: 10.1177/108925320601000117.

  • 89. Opincariu D Chitu M Rat N Benedek I. Integrated ST segment elevation scores and in-hospital mortality in STEMI patients undergoing primary PCI. Journal of Cardiovascular Emergencies. 2016;2:114-121. doi: 10.1515/jce-2016-0018.

  • 90. Ikossi DG Knudson MM Morabito DJ et al. Continuous muscle tissue oxygenation in critically injured patients: a prospective observational study. J Trauma. 2006;61:780-790. doi: 10.1097/01.ta.0000239500.71419.58.

  • 91. Nicks BA Campos KM Bozeman WP. Association of low noninvasive near-infrared spectroscopic measurements during initial trauma resuscitation with future development of multiple organ dysfunction. World J Emerg Med. 2015;6:105-110. doi: 10.5847/wjem.j.1920-8642.2015.02.004.

  • 92. Miner J Nelson R Hayden L. The effect of near infrared spectroscopy monitoring on the treatment of patients presenting to the emergency department in shock. Crit Care Med. 2010;38:S861.

  • 93. Lima A van Bommel J Jansen TC Ince C Bakker J. Low tissue oxygen saturation at the end of early goal-directed therapy is associated with worse outcome in critically ill patients. Crit Care. 2009;13(Suppl5):S13. doi: 10.1186/cc8011.

  • 94. Mariscalo G Musumeci F. Fluid management in the cardiothoracic intensive care unit: diuresis – diuretics and hemofiltration. Curr Opin Anaesthesiol. 2014;27:133-139. doi: 10.1097/ACO.0000000000000055.

  • 95. Jakovljevic DG Moore S Hallsworth K Fattakhova G Thoma C Trenell MI. Comparison of cardiac output determined by bioimpedance and bioreactance methods at rest and during exercise. J Clin Monit Comput. 2012;26:63-68. doi: 10.1007/s10877-012-9334-4.

  • 96. Laupland KB Shahpori R Kirkpatrick AW et al. Occurrence and outcome of fever in critically ill adults. Crit Care Med. 2008;36:1531. doi: 10.1097/CCM.0b013e318170efd3.

  • 97. Ryan M Levy MM. Clinical review: fever in intensive care unit patients. Crit Care. 2003;7:221-225.

  • 98. Niven DJ Léger C Stelfox HT Laupland KB. Fever in the critically ill: a review of epidemiology immunology and management. J Intensive Care Med. 2012;27:290-297. doi: 10.1177/0885066611402463.

  • 99. Niven DJ Gaudet JE Laupland KB Mrklas KJ Roberts DJ Stelfox HT. Accuracy of Peripheral Thermometers for Estimating Temperature: A Systematic Review and Metaanalysis. Ann Intern Med. 2015;163:768-777. doi: 10.7326/M15-1150.

  • 100. Jefferies S Weatherall M Young P Beasley R. A systematic review of the accuracy of peripheral thermometry in estimating core temperatures among febrile critically ill patients. Crit Care Resusc. 2011;13:194-199.

  • 101. Young PJ Saxena M Beasley R et al. Early peak temperature and mortality in critically ill patients with or without infection. Intensive Care Med. 2012. doi: 10.1007/s00134-012-2478-3.

  • 102. Jeremy S. Bock and Stephen S. Gottlieb. Cardiorenal Syndrome. Circulation. 2010;121:2592-2600. https://doi.org/10.1161/CIRCULATIONAHA.109.886473.

  • 103. Md Ralib A Pickering JW Shaw GM Endre ZH. The urine output definition of acute kidney injury is too liberal. Critical Care. 2013;17:R112. doi:10.1186/cc12784.

  • 104. Prowle JR Liu YL Licari E et al. Oliguria as predictive biomarker of acute kidney injury in critically ill patients. Crit Care. 2011;17:R172. doi: 10.1186/cc10318.

  • 105. Macedo E Malhotra R Bouchard J Wynn SK Mehta RL. Oliguria is an early predictor of higher mortality in critically ill patients. Kidney Int. 2011;80:760-767. doi: 10.1038/ki.2011.150.

  • 106. Uchino S Kellum JA Bellomo R et al. Beginning and Ending Supportive Therapy for the Kidney (BEST Kidney) Investigators. Acute renal failure in critically ill patients: a multinational multicenter study. JAMA. 2005;294:813-818. doi: 10.1001/jama.294.7.813.

  • 107. Antonelli M Levy M Andrews PJ et al. Hemodynamic monitoring in shock and implications for management. International Consensus Conference Paris France 27-28 April 2006. Intensive Care Med. 2007;33:575-590. doi: 10.1007/s00134-007-0531-4.

  • 108. McCullough PA Adam A Becker CR et al. Epidemiology and prognostic implications of contrast-induced nephropathy. Am J Cardiol. 2006;98:5K-13K.

  • 109. Mohammed NMA Mahfouz A Achkar K Rafie IM Hajar R. Contrast-induced Nephropathy. Heart Views. 2013;14:106-116. doi:10.4103/1995-705X.125926.

  • 110. Truijen J van Lieshout JJ Wesselink WA Westerhof BE. Noninvasive continuous hemodynamic monitoring. J Clin Monit Comput. 2012;26:267-278. doi:10.1007/s10877-012-9375-8.

  • 111. Ameloot K Palmers PJ Malbrain ML. The accuracy of noninvasive cardiac output and pressure measurements with finger cuff: a concise review. Curr Opin Crit Care. 2015;21:232-239. doi: 10.1097/MCC.0000000000000198.

  • 112. Martina JR Westerhof BE van Goudoever J et al. Noninvasive continuous arterial blood pressure monitoring with Nexfin®. Anesthesiology. 2012;116:1092-1103. doi: 10.1097/ALN.0b013e31824f94ed.

  • 113. Kim SH Lilot M Sidhu KS et al. Accuracy and precision of continuous noninvasive arterial pressure monitoring compared with invasive arterial pressure: a systematic review and meta-analysis. Anesthesiology. 2014;120:1080-1097. doi: 10.1097/ALN.0000000000000226.

  • 114. Keren H Burkhoff D Squara P. Evaluation of a noninvasive continuous cardiac output monitoring system based on thoracic bioreactance. Am J Physiol Heart Circ Physiol. 2007;293:H583-H589. doi: 10.1152/ajpheart.00195.2007.

  • 115. van Lieshout JJ Toska K van Lieshout EJ Eriksen M Walløe L Wesseling KH. Beat-to-beat noninvasive stroke volume from arterial pressure and Doppler ultrasound. Eur J Appl Physiol. 2003;90:131-137.

  • 116. Engore M Barbee D. Comparison of Cardiac Output Determined by Bioimpedance Thermodilution and the Fick Method. Am J Crit Care. 2005;14:40-45.

  • 117. Ball TR Culp BC Patel V et al. Comparation of the endotracheal cardiac output monitor to thermodilution in cardiac surgery patients. J Cardiothorac Vasc. 2010;24:762-766. doi: 10.1053/j.jvca.2010.04.008.

  • 118. Babbs CF. Noninvasive measurement of cardiac stroke volume using pulse wave velocity and aortic dimensions: a simulation study. BioMedical Engineering OnLine. 2014;13:137. doi:10.1186/1475-925X-13-137.

  • 119. Sakka SG Kozieras J Thuemer O van Hout N. Measurement of cardiac output: a comparison between transpulmonary thermodilution and uncalibrated pulse contour analysis. Br J Anaesth. 2007;99:337-342.

  • 120. Oren-Grinberg A. The PiCCO Monitor. Int Anesthesiol Clin. 2010;48:57-85. doi: 10.1097/AIA.0b013e3181c3dc11.

  • 121. Young BP Low LL. Noninvasive monitoring cardiac output using partial CO(2) rebreathing. Crit Care Clin. 2010;26:383-392. doi: 10.1016/j.ccc.2009.12.002.

  • 122. Cholley BP Vieillard-Baron A Mebazaa A. Echocardiography in the ICU: time for widespread use! Intensive Care Med. 2006;32:9-10. doi: 10.1007/s00134-005-2833-8.

  • 123. Wilansky S. Echocardiography in the Assessment of Complications of Myocardial Infarction. Tex Heart Inst J. 1991;18:237-242.

  • 124. Esmaeilzadeh M Parsaee M Maleki M. The Role of Echocardiography in Coronary Artery Disease and Acute Myocardial Infarction. J Tehran Heart Cent. 2013;8:1-13.

  • 125. Bródka J Tułecki Ł Ciurysek M Gburek T. Thermodilution vs transesophageal echocardiography for cardiac output measurement in patients with good left ventricle function. Anestezjol Intens Ter. 2010;42:15-18.

  • 126. Perrino AC Jr Harris SN Luther MA. Intraoperative determination of cardiac output using multiplane transesophageal echocardiography: a comparison to thermodilution. Anesthesiology. 1998;89:350-357.

  • 127. Mehta Y Arora D. Newer methods of cardiac output monitoring. World J Cardiol. 2014;6:1022-1029. doi:10.4330/wjc.v6.i9.1022

  • 128. Laupland KB Bands CJ. Utility of esophageal Doppler as a minimally invasive hemodynamic monitor: a review. Can J Anaesth. 2002;49:393-401. doi: 10.1007/BF03017329.

  • 129. Sharma J Bhise M Singh A Mehta Y Trehan N. Hemodynamic measurements after cardiac surgery: transesophageal Doppler versus pulmonary artery catheter. J Cardiothorac Vasc Anesth. 2005;19:746-750.

  • 130. Camporata L Beale R. Pitfalls in haemodynamic monitoring based on the arterial pressure waveform. Crit Care. 2010;14:124. doi: 10.1186/cc8845.

  • 131. Thom O Taylor DM Wolfe RE. Comparation of a suprasternal cardiac output monitor (USCOM) with the pulmonary artery catheter. Br J Anaesth. 2009;103:800-804. doi: 10.1093/bja/aep296.

  • 132. Pulmonary Artery Consensus Conference: consensus statement. Crit Care Med. 1997;25:910-925.

  • 133. Bishop MH. Invasive monitoring in trauma and other critical illness. Current Opinion in Critical Care 1995;3:206.

  • 134. Magder S. Invasive hemodynamic monitoring. Crit Care Clin. 2015;31:67-87. doi: 10.1016/j.ccc.2014.08.004.

  • 135. De Backer D. Is there a role for invasive hemodynamic monitoring in acute heart failure management? Curr Heart Fail Rep. 2015;12:197-204. doi: 10.1007/s11897-015-0256-6.

  • 136. Runciman WB Ilsley AH Roberts JG. An evaluation of thermodilution cardiac output measurement using the Swan-Ganz catheter. Anaesth Intensive Care. 1981;9:208-220.

  • 137. Ameloot K Meex I Genbrugge C et al. Accuracy of continuous thermodilution cardiac output monitoring by pulmonary artery catheter during therapeutic hypothermia in postcardiac arrest patients. Resuscitation. 2014;85:1263-1268. doi: 10.1016/j.resuscitation.2014.06.025.

  • 138. Mebazaa A Gheoghiade M Piña IL et al. Practical recommendations for prehospital and early in hospital management of patients presenting with acute heart failure SNVSndromes. Crit Care Med. 2008;36(1 Suppl):S129-S139. doi: 10.1097/01.CCM.0000296274.51933.4C.

  • 139. Filipescu D Tomescu D Droc G et al. Recomandări pentru monitorizarea hemodinamică în soc. In: Sandesc D Bedreag O (eds) Recomandări si protocoale în anestezie terapie intensivă și medicină de urgentă. Timișoara: Ed Mirton 2009; p. 541-570.

  • 140. Weed HG. Pulmonary “capillary” wedge pressure not the pressure in the pulmonary capillaries. Chest. 1991;100:1138-1140.

  • 141. Ryan JJ Rich JD Thiruvoipati T Swamy R Kim GH Rich S. Current practice for determining pulmonary capillary wedge pressure predisposes to serious errors in the classification of patients with pulmonary hypertension. Am Heart J. 2012;163:589-594. doi: 10.1016/j.ahj.2012.01.024.

  • 142. Cecconi M Rhodes A Della Rocca G. From arterial pressures to cardiac output. JL Vincent (ed) 2008 Yearbook of intensive care and emergency medicine. Berlin: Springer Verlag 2008; p. 591-600.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 735 247 8
PDF Downloads 293 146 5