Detection of Myocardial Injury Using miRNAs Expression as Genetic Biomarkers in Acute Cardiac Care

Open access


Cardiovascular disease is a leading cause of death globally. At present, there are many ways to diagnose this pathophysiology. The greatest disadvantages related to current biomarkers are their low specificity, low selectivity and low accuracy. A new method, extensively studied recently, is the expression of miRNAs, used as genetic biomarkers for the early diagnosis of cardiovascular diseases. This paper presents an update of miRNAs species expression that can serve as early diagnostic biomarkers and for the continuous monitoring of patients with cardiovascular disease.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Oddo M Rossetti AO. Predicting neurological outcome after cardiac arrest. Curr Opin Crit Care. 2011;17:254-259. doi: 10.1097/MCC.0b013e328344f2ae.

  • 2. Zakkar M Ascione R James AF Angelini GD Suleiman MS. Inflammation oxidative stress and postoperative atrial fibrillation in cardiac surgery. Pharmacol Ther. 2015;154:13-20. doi: 10.1016/j.pharmthera.2015.06.009.

  • 3. Doehner W Haehling S Von Pschowski R Storm C Schroeder T. Influence of core body temperature on Tryptophan metabolism kynurenines and estimated IDO activity in critically ill patients receiving target temperature management following cardiac arrest. Resuscitation. 2016;107:107-114. doi: 10.1016/j.resuscitation.2016.07.239.

  • 4. Yao X Carlson D Sun Y et al. Mitochondrial ROS induces cardiac inflammation via a pathway through mtDNA damage in a pneumonia-related sepsis model. PLoS One. 2015;10:1-28. doi: 10.1371/journal.pone.0139416.

  • 5. Tao X Lu L Xu Q Li S Lin M. Cardioprotective effects of anesthetic preconditioning in rats with ischemia-reperfusion injury: propofol versus isoflurane. J Zhejiang Univ Sci B. 2009;10:740-747. doi: 10.1631/jzus.B0920119.

  • 6. Moore E Bellomo R Nichol A. Biomarkers of acute kidney injury in anesthesia intensive care and major surgery: From the bench to clinical research to clinical practice. Minerva Anestesiol. 2010;76:425-440.

  • 7. Devaux Y Stammet P Friberg H et al. MicroRNAs: new biomarkers and therapeutic targets after cardiac arrest? Crit Care. 2015;19:54. doi: 10.1186/s13054-015-0767-2.

  • 8. Bryant RJ Pawlowski T Catto JWF et al. Changes in circulating microRNA levels associated with prostate cancer. Br J Cancer. 2012;106:768-774. doi: 10.1038/bjc.2011.595.

  • 9. Pipan V Zorc M Kunej T. MicroRNA polymorphisms in cancer: A literature analysis. Cancers (Basel). 2015;7:1806-1814. doi: 10.3390/cancers7030863.

  • 10. Stather PW Sylvius N Wild JB Choke E Sayers RD Bown MJ. Differential MicroRNA expression profiles in peripheral arterial disease. Circ Cardiovasc Genet. 2013;6:490-497. doi: 10.1161/CIRCGENETICS.111.000053.

  • 11. Bedreag OH Papurica M Rogobete AF et al. Using Circulating miRNAs as Biomarkers for the Evaluation and Monitoring of the Mitochondrial Damage in the Critically Ill Polytrauma Patients. Clin Lab. 2016;8:1-7. doi: 10.7754/Clin.Lab.2016.160121.

  • 12. Abdelmohsen K Srikantan S Kang M-J Gorospe M. Regulation of senescence by microRNA biogenesis factors. Ageing Res Rev. 2012;11:491-500. doi: 10.1016/j.arr.2012.01.003.

  • 13. Papurica M Rogobete AF Sandesc D et al. The Expression of Nuclear Transcription Factor Kappa B (NF-KB) in the Case of Critically Ill Polytrauma Patients with Sepsis and Its Interactions with microRNAs. Biochem Genet. 2016;54:337–347. doi: 10.1007/s10528-016-9727-z.

  • 14. Bedreag OH Rogobete AF Cradigati CA et al. A novel evaluation of microvascular damage in critically ill polytrauma patients by using circulating microRNAs. Rev Romana Med Lab. 2016;24:21-30. DOI:10.1515/rrlm-2016-0015

  • 15. Bedreag OH Sandesc D Chiriac SD et al. The Use of Circulating miRNAs as Biomarkers for Oxidative Stress in Critically Ill Polytrauma Patients. Clin Lab. 2016;62:263-274.

  • 16. Dumache R Rogobete AF Bedreag OH et al. Use of miRNAs as Biomarkers in Sepsis. Anal Cell Pathol (Amst). 2015;2015:186716. doi: 10.1155/2015/186716.

  • 17. Papurica M Rogobete AF Sandesc D et al. Redox Changes Induced by General Anesthesia in Critically Ill Patients with Multiple Traumas. Molecular Biology International. 2015;2015:238586. doi: 10.1155/2015/238586.

  • 18. Papurica M Sandesc D Rogobete AF et al. Cardioprotective Effects Induced by Preconditioning with Halogenated Anesthetics. Journal of Interdisciplinary Medicine. 2016;1:23-31. doi: 10.1515/jim-2016-0006.

  • 19. Yao L Lv X Wang X. MicroRNA 26a inhibits HMGB1 expression and attenuates cardiac ischemia-reperfusion injury. J Pharmacol Sci. 2016;131:6-12. doi: 10.1016/j.jphs.2015.07.023.

  • 20. Wu Z Qi Y Guo Z Li P Zhou D. miR-613 suppresses ischemia-reperfusion-induced cardiomyocyte apoptosis by targeting the programmed cell death 10 gene. Biosci Trends. 2016;10:251-257. doi: 10.5582/bst.2016.01122.

  • 21. Gidlöf O Smith JG Miyazu K et al. Circulating cardio-enriched microRNAs are associated with long-term prognosis following myocardial infarction. BMC Cardiovasc Disord. 2013;13:12. doi: 10.1186/1471-2261-13-12.

  • 22. D’Alessandra Y Devanna P Limana F et al. Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur Heart J. 2010;31:2765-2773. doi: 10.1016/j.clinbiochem.2012.04.013

  • 23. Vegter EL Schmitter D Hagemeijer Y et al. Use of biomarkers to establish potential role and function of circulating microRNAs in acute heart failure. Int J Cardiol. 2016;224:231-239. doi: 10.1016/j.ijcard.2016.09.010.

  • 24. Dong D Yang B. Role of microRNAs in cardiac hypertrophy myocardial fibrosis and heart failure. Acta Pharm Sin B. 2011;1:1-7. doi: 10.1002/iub.204.

  • 25. Li HY Zhao X Liu YZ et al. Plasma MicroRNA-126-5p is Associated with the Complexity and Severity of Coronary Artery Disease in Patients with Stable Angina Pectoris. Cell Physiol Biochem. 2016;39:837-846. doi: 10.1159/000447794.

  • 26. Liu H Yang N Fei Z et al. Analysis of plasma miR-208a and miR-370 expression levels for early diagnosis of coronary artery disease. Biomed Rep. 2016;5:332-336. doi: 10.3892/br.2016.726.

  • 27. Mehta R Otgonsuren M Younoszai Z Allawi H Raybuck B Younossi Z. Circulating miRNA in patients with non-alcoholic fatty liver disease and coronary artery disease. BMJ Open Gastroenterol. 2016;3:e000096. doi: 10.1136/bmjgast-2016-000096.

  • 28. Sun X Zhang M Sanagawa A et al. Circulating microRNA-126 in patients with coronary artery disease: correlation with LDL cholesterol. Thromb J. 2012;10:16. doi: 10.1186/1477-9560-10-16.

  • 29. Fichtlscherer S De Rosa S Fox H et al. Circulating microRNAs in patients with coronary artery disease. Circ Res. 2010;107:677-684. doi: 10.1161/CIRCRESAHA.109.215566.

  • 30. Wang F Long G Zhao C et al. Plasma microRNA-133a is a new marker for both acute myocardial infarction and underlying coronary artery stenosis. J Transl Med. 2013;11:222. doi: 10.1186/1479-5876-11-222.

  • 31. Wang GK Zhu JQ Zhang JT et al. Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J. 2010;31(6):659-666. doi: 10.1093/eurheartj/ehq013.

  • 32. Cheng Y Tan N Yang J et al. A translational study of circulating cell-free microRNA-1 in acute myocardial infarction. Clin Sci (Lond). 2010;119:87-95. doi: 10.1042/CS20090645.

  • 33. Meder B Keller A Vogel B et al. MicroRNA signatures in total peripheral blood as novel biomarkers for acute myocardial infarction. Basic Res Cardiol. 2011;106:13-23. doi: 10.1007/s00395-010-0123-2.

Journal information
Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 261 97 2
PDF Downloads 114 43 3