The Relevance of Coding Gene Polymorphysms of Cytokines and Cellular Receptors in Sepsis

Open access

Abstract

Sepsis is an injurious systemic host response to infection, which can often lead to septic shock and death. Recently, the immune-pathogenesis and genomics of sepsis have become a research topic focusing on the establishment of diagnostic and prognostic biomarkers. As yet, none have been identified as having the necessary specificity to be used independently of other factors in this respect. However the accumulation of current evidence regarding genetic variations, especially the single nucleotide polymorphisms (SNPs) of cytokines and other innate immunity determinants, partially explains the susceptibility and individual differences of patients with regard to the evolution of sepsis. This article outlines the role of genetic variation of some serum proteins which have the potential to be used as biomarker values in evaluating sepsis susceptibility and the progression of the condition.

1. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001;29:1303–10.

2. Mariansdatter SE, Eiset AH, Søgaard KK, Christiansen CF. Differences in reported sepsis incidence according to study design: a literature review. BMC Med Res Methodol. 2016;16:137. doi: 10.1186/s12874-016-0237-9.

3. Dombrovskiy VY, Martin AA, Sunderram J, Paz HL. Rapid increase in hospitalization and mortality rates for severe sepsis in the United States: a trend analysis from 1993 to 2003. Crit Care Med. 2007;35:1244–50.

4. Zhang L, Zhu G, Han L, Fu P. Early goal-directed therapy in the management of severe sepsis or septic shock in adults: a meta-analysis of randomized controlled trials. BMC Med Res Methodol. 2015;13:71. doi: 10.1186/s12916-015-0312-9.

5. Martin GS. Sepsis, severe sepsis and septic shock: changes in incidence, pathogens and outcomes. Expert Rev Anti Infect Ther. 2012;10:701–6.

6. Donadello K, Scolletta S, Covajes C, et al. suPAR as a prognostic biomarker in sepsis. BMC Med. 2012;10:2. doi: 10.1186/1741-7015-10-2.

7. Sankar V, Webster NR. Clinical application of sepsis biomarkers. J Anesth. 2013;27:269-83.

8. Szederjesi J, Almasy E, Lazar A, et al. An evaluation of serum procalcitonin and C-reactive protein levels as diagnostic and prognostic biomarkers of severe sepsis. J Crit Care Med. 2015;1:147-53.

9. Liu X, Ren H, Peng D. Sepsis biomarkers: an omics perspective. Front Med. 2014;8:58-67.

10. Stanilova SA. Functional relevance of IL-10 promoter polymorphisms for sepsis development. Crit Care. 2010;14:119. doi: 10.1186/cc8839.

11. Deasy A, Read RC. Genetic variation in pro-inflammatory cytokines and meningococcal sepsis. Curr Opin Infect Dis. 2010;23:255–8.

12. Wong HR. Genetics and genomics in pediatric septic shock. Crit Care Med. 2012;40:1618–26.

13. Namath A, Patterson AJ. Genetic polymorphisms in sepsis. Crit Care Clin. 2009;25:835–56.

14. Jabandziev P, Smerek M, Michalek J, et al. Multiple gene-to-gene interactions in children with sepsis: a combination of five gene variants predicts outcome of life-threatening sepsis. Critical Care. 2014;18:R1. doi: 10.1186/cc13174.

15. Chauhan M, McGuire W. Interleukin-6 (-174C) polymorphism and the risk of sepsis in very low birth weight infants: meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2008;93: F427-29. doi: 10.1136/adc.2007.134205.

16. Teuffel O, Ethier MC, Beyene J, Sung L. Association between tumor necrosis factor-alpha promoter -308 A/G polymorphism and susceptibility to sepsis and sepsis mortality: a systematic review and meta-analysis. Crit Care Med. 2010;38:276-82.

17. Tiancha H, Huiqin W, Jiyong J, et al. Association between lymphotoxin-alpha intron +252 polymorphism and sepsis: a meta-analysis. Scand J Infect Dis. 2011;43:436-47.

18. Angus DC, Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001;29:1303–10.

19. Surbatovic M, Veljovic M, Jevdjic J, Popovic N, Djordjevic D, Radakovic S. Immunoinflammatory Response in Critically Ill Patients: Severe Sepsis and/or Trauma. Mediators Inflamm. 2013;2013:362793. doi: 10.1155/2013/362793.

20. Kothari N, Bogra J, Abbas H, et al. Tumor Necrosis Factor gene polymorphism results in high TNF level in sepsis and septic shock. Cytokine. 2013;61:676–81.

21. Jeremic V, Tamara Alempijevic T, Srdan Mijatovic S, et al. Clinical relevance of IL-6 gene polymorphism in severely injured patients. Bosn J Basic Med Sci. 2014;14:110-7.

22. Allam G, Alsulaimani AA, Alzaharani AK, Nasr A. Neonatal infections in Saudi Arabia: Association with cytokine gene Polymorphisms. Centr Eur J Immunol. 2015;40:68-77.

23. Baghel K, Srivastava RN, Chandra A, et al. TNF-α, IL-6, and IL-8 Cytokines and Their Association with TNF-α-308 G/A Polymorphism and Postoperative Sepsis. J Gastrointest Surg. 2014;18:1486–94.

24. Feng B, Mao ZR, Pang K, Zhang SI, Li L. Association of tumor necrosis factor α −308G/A and interleukin-6 −174G/C gene polymorphism with pneumonia-induced sepsis. J Crit Care. 2015;30:920-2.

25. Gao JW, Zhang AQ, Pan W, Yue CI, Zeng L, Gu W, Jiang J. Association between IL-6-174G/C Polymorphism and the Risk of Sepsis and Mortality: A Systematic Review and Meta Analysis. PloS One. 2015;10:e0118843. doi: 10.1371/journal.pone.0118843.

26. Faix JD. Biomarkers of sepsis. Crit Rev Clin Lab Sci. 2013;50:23-36.

27. Uusitalo-Seppala R, Koskinen P, Leino A, et al. Early detection of severe sepsis in the emergency room: diagnostic value of plasma C-reactive protein, procalcitonin, and interleukin-6. Scand J Infect Dis. 2011;43:883–90.

28. Miguel-Bayarri V, Casanoves-Laparra EB, Pallas-Beneyto L, Sancho-Chinesta S, Martin-Osorio LF, et al. Prognostic value of the biomarkers procalcitonin, interleukin-6 and C-reactive protein in severe sepsis. Med Intensiva. 2012;36:556–62.

29. Tschaikowsky K, Hedwig-Geissing M, Braun GG, Radespiel-Troeger M. Predictive value of procalcitonin, interleukin-6, and C reactive protein for survival in postoperative patients with severe sepsis. J Crit Care. 2011;26:54–64.

30. Palmiere C, Augsburger M. Markers for sepsis diagnosis in the forensic setting: state of the art. Croat Med J. 2014;55:103–14.

31. Fishman D, Faulds G, Jeffery R et al. The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. J Clin Invest. 1998;1:1369-76.

32. Kilpinen S, Hulkkonen J, Wang XY, Hurme M. The promoter polymorphism of the interleukin-6 gene regulates interleukin-6 production in neonates but not in adults. Eur Cytokine Netw. 2001;12:62-8.

33. Georgescu AM, Banescu C, Badea I, et al. IL-6 gene polymorphisms and sepsis in ICU adult Romanian patients: a prospective study. Rev Romana Med Lab. 2017; 25. doi: 10.1515/rrlm-2016-0044.

34. Baier RJ, Loggins J, Yanamandra K. IL-10, IL-6 and CD14 polymorphisms and sepsis outcome in ventilated very low birth weight infants. BMC Med. 2006;4:10. doi:10.1186/1741-7015-4-10.

35. Ahrens P, Kattner E, Kohler B, et al. Mutations of genes involved in the innate immune system as predictors of sepsis in very low birth weight infants. Pediatr Res. 2004;55:652-6.

36. Martin-Loeches I, Sole-Violan J, Rodriguez de Castro F, Isabel Garcia-Laorden M, Borderias L, et al. Variants at the promoter of the interleukin-6 gene are associated with severity and outcome of pneumococcal community-acquired pneumonia. Intensive Care Med. 2012;38:256–62.

37. Sole-Violan J, Rodriguez de Castro F, Isabel Garcia-Laorden M, Blanquer J, Aspa J, et al. Genetic variability in the severity and outcome of community-acquired pneumonia. Respir Med. 2010;104:440–7.

38. Davis SM, Clark EAS, Nelson LT, Silver RM. The association of innate immune response gene polymorphisms and puerperal group A streptococcal sepsis. Am J Obstet Gynecol. 2010;202:308.e301–308.e308.

39. Carregaro F, Carta A, Cordeiro JA, Lobo SM, Tajara EH, et al. Polymorphisms IL10–819 and TLR-2 are potentially associated with sepsis in brazilian patients. Mem Inst Oswaldo Cruz. 2010;105:649–56.

40. Shalhub S, Junker CE, Imahara SD, Mindrinos MN, Dissanaike S, et al. Variation in the TLR4 gene influences the risk of organ failure and shock posttrauma: a cohort study. J Trauma. 2009;66:115–22.

41. Cesur S, Sengui A, Kurtoglu Y, et al. Prognostic value of cytokines (TNF-α, IL-10, Leptin) and C-reactive protein serum levels in adult patients with nosocomial sepsis. J Microb Infect Dis. 2011;1:101-9.

42. Zeng L, Gu W, Chen K, et al. Clinical relevance of the interleukin 10 promoter polymorphisms in Chinese Han patients with major trauma: genetic association studies. Crit Care. 2009,13:R188. doi:10.1186/cc8182.

43. Surbatovic M, Grujic K, Cikota B, et al. Polymorphisms of genes encoding tumor necrosis factor-alpha, interleukin-10, cluster of differentiation-14 and interleukin-1ra in critically ill patients. J Crit Care. 2010;25,542.e1–542.e8.

44. Stanilova SA, Miteva LD, Karakolev ZT, Stefanov CS. Interleukin-10-1082 promoter polymorphism in association with cytokine production and sepsis susceptibility. Intensive Care Med. 2006;32:260–6.

45. Ouyang L, Lv YD, Hou C, Wu GB, He ZH. Quantitative analysis of the association between interleukin-10 1082A/G polymorphism and susceptibility to sepsis. Mol Biol Rep. 2013;40:4327–32.

46. Pan W, Zhang AQ, Yue CL, et al. Association between interleukin-10 polymorphisms and sepsis: a meta-analysis. Epidemiol Infect. 2015;143:366–75.

47. Cardoso CP, de Oliveira AJ, Botoni FA, et al. Interleukin-10 rs2227307 and CXCR2 rs1126579 polymorphisms modulate the predisposition to septic shock. Mem Inst Oswaldo Cruz. 2015;110:453-60.

48. Accardo Palumbo A, Forte GI, Pileri D, et al. Analysis of IL-6, IL-10 and IL-17 genetic polymorphisms as risk factors for sepsis development in burned patients. Burns. 2012;38:208-13.

49. Kofoed K, Andersen O, Kronborg G, et al. Use of plasma C-reactive protein, procalcitonin, neutrophils, macrophage migration inhibitory factor, soluble urokinase-type plasminogen activator receptor, and soluble triggering receptor expressed on myeloid cells-1 in combination to diagnose infections: a prospective study. Crit Care. 2007;11:R38.

50. Lorenz E, Mira JP, Frees KL, Schwartz DA. Relevance of mutations in the TLR4 receptor in patients with gram-negative septic shock. Arch Intern Med. 2002;162:1028–32.

51. Wang H, Wei Y, Zeng Y, et al. The association of polymorphisms of TLR4 and CD14 genes with susceptibility to sepsis in a Chinese population. BMC Med Genet. 2014;15:123.

52. Schlüter B, Raufhake C, Erren M, et al. Effect of the interleukin-6 promoter polymorphism (-174 G/C) on the incidence and outcome of sepsis. Crit Care Med. 2002;30:32-7.

53. Oku R, Oda S, Nakada TA, et al. Differential pattern of cell-surface and soluble TREM 1 between sepsis and SIRS. Cytokine. 2013;61:112–7.

54. Su L, Han B, Liu C, et al. Value of soluble TREM-1, procalcitonin, and C-reactive protein serum levels as biomarkers for detecting bacteremia among sepsis patients with new fever in intensive care units: a prospective cohort study. BMC Infect Dis. 2012;12:157. doi: 10.1186/1471-2334-12-157.

55. Su L, Liu C, Li C, et al. Dynamic Changes in Serum Soluble Triggering Receptor Expressed on Myeloid Cells-1 (sTREM-1) and its Gene Polymorphisms are Associated with Sepsis Prognosis. Inflammation. 2012;35:1833-43.

56. Peng LS, Li J, Zhou GS, Deng LH, Yao HG. Relationships between genetic polymorphisms of triggering receptor expressed on myeloid cells-1 and septic shock in a Chinese Han population. World J Emerg Med. 2015;6:123-30.

57. Chen QX, Zhou HD, Wu SJ, et al. Lack of association between TREM-1 gene polymorphisms and severe sepsis in a Chinese Han population. Hum Immunol. 2008;69:220–26.

58. Lemari J, Barraud D, Gibot S. Host response biomarkers in sepsis: overview on sTREM-1 detection. Methods Mol Biol. 2015;1237:225-39.

59. Dimopoulou I, Pelekanou A, Mavrou I, et al. Early serum levels of soluble triggering receptor expressed on myeloid cells–1 in septic patients: Correlation with monocyte gene expression. J Crit Care. 2012;27:294–300.

60. Masson S, Caironi P, Spanuth E, et al. Presepsin (soluble CD14 subtype) and procalcitonin levels for mortality prediction in sepsis: data from the Albumin Italian Outcome Sepsis trial. Crit Care. 2014, 18:R6. doi: 10.1186/cc13183.

61. Endo S, Suzuki Y, Takahashi G, et al. Usefulness of presepsin in the diagnosis of sepsis in a multicenter prospective study. J Infect Chemother. 2012;18:891-7.

62. Yaegashi Y, Shirakawa K, Sato N, et al. Evaluation of a newly identified soluble CD14 subtype as a marker for sepsis. J Infect Chemother. 2005;11:234-8.

63. Okamura Y, Yokoi H. Development of a point-of-care assay system for measurement of presepsin (sCD14-ST). Clin Chim Acta. 2011;412:2157–61.

64. Zhang AQ, Yue CI, Gu W, Du J, Wang HY, Jiang J. Association between CD14 Promoter -159C/T Polymorphism and the Risk of Sepsis and Mortality: A Systematic Review and Meta-Analysis. PLoS One. 2013;8:e71237. doi: 10.1371/journal.pone.0071237.

65. Lorente L, Martin MM, Borreguero-Leon JM, et al. The 4G/4G Genotype of PAI-1 Polymorphism Is Associated with Higher Plasma PAI-1 Concentrations and Mortality in Patients with Severe Sepsis. PLoS One. 2015;10:e0129565. doi: 10.1371/journal.pone.0129565.

66. Madách K, Aladzsity I, Szilágyi A, et al. 4G/5G polymorphism of PAI-1 gene is associated with multiple organ dysfunction and septic shock in pneumonia induced severe sepsis: prospective, observational, genetic study. Crit Care. 2010;14:R79. doi: 10.1186/cc8992.

67. Perés Wingeyer SD, Cunto ER, Nogueras CM, San Juan JA, Gomez N, de Larrañaga GF. Biomarkers in sepsis at time zero: intensive care unit scores, plasma measurements and polymorphisms in Argentina. J Infect Dev Ctries. 2012;6:555–62.

68. Andersen O, Eugen-Olsen J, Kafoed K, et al. Soluble urokinase plasminogen activator receptor is a marker of dysmetabolism in HIV-infected patients receiving highly active antiretroviral therapy. J Med Virol.2008;80:209-16.

69. Eugen-Olsen J, Andersen O, Linneberg A, et al. Circulating soluble urokinase plasminogen activator receptor predicts cancer, cardiovascular disease, diabetes and mortality in the general population. J Intern Med. 2010;268:296-308.

70. Backes Y, van der Sluijs Koenraad F, Mackie DP, et al. Usefulness of suPAR as a biological marker in patients with systemic inflammation or infection: a systematic review. Intensive Care Med. 2012;38:1418-28.

71. Park YJ, Liu G, Tsuruta Y, et al. Participation of the urokinase receptor in neutrophil efferocytosis. Blood. 2009;114:860-70.

72. Wiersinga WJ, Kager LM, Hovius JW, et al. Urokinase receptor is necessary for bacterial defense against pneumonia-derived septic melioidosis by facilitating phagocytosis. J Immunol. 2010;184:3079-86.

73. Koch A, Voigt S, Kruschinski C, et al. Circulating soluble urokinase plasminogen activator receptor is stably elevated during the first week of treatment in the intensive care unit and predicts mortality in critically ill patients. Crit Care. 2011;15:R63. doi: 10.1186/cc10037.

74. Georgescu AM, Szederjesi J, Dobreanu M, et al. Soluble urokinase-type plasminogen activator receptor (suPAR) – a possible biomarker for bacteremia in sepsis. Rev Romana Med Lab. 2015;23:59-73.

75. Donadello K, Scolletta S, Covajes C, Vincent JL. suPAR as a prognostic biomarker in sepsis. BMC Med. 2012;10:2. doi: 10.1186/1741-7015-10-2.

76. De Kruif MD, Lemaire LC, Giebelen IA, et al. The influence of corticosteroids on the release of novel biomarkers in human endotoxemia. Intensive Care Med. 2008;34:518-22.

77. Huttunen R, Syrjanen J, Vuento R, et al. Plasma level of soluble urokinase-type plasminogen activator receptor as a predictor of disease severity and case fatality in patients with bacteraemia: a prospective cohort study. J Intern Med. 2011;270:32-40.

78. Koch A, Tacke F. Why high suPAR is not super-diagnostic, prognostic and potential pathogenic properties of a novel biomarker in the ICU. Crit Care. 2011;15:1020. doi: 10.1186/cc10577.

79. Molkanen T, Ruotsalainen E, Thorball CW, et al. Elevated soluble urokinase plasminogen activator receptor (suPAR) predicts mortality in Staphilococcus aureus bacteraemia. Eur J Clin Microbiol Infect Dis. 2011;30:1417-24.

80. Kafoed K, Eugen-Olsen J, Petersen J, et al. Predicting mortality in patients with systemic inflammatory response syndrome: an evaluation of two prognostic models, two soluble receptors, and a macrophage migration inhibitory factor. Eur J Clin Microbiol Infect Dis. 2008;27:375-83.

81. Walley KR, Russell JA. Protein C –1641 AA is associated with decreased survival and more organ dysfunction in severe sepsis. Crit Care Med. 2007;35:12-7.

82. Skibstead S, Bhasin MK, Aird WC, Shapiro NI. Bench-to-bedside review: Future novel diagnostics for sepsis – a systems biology approach. Critical Care. 2013;17:231. doi: 10.1186/cc12693.

Journal Information

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 301 182 12
PDF Downloads 133 92 6