The Cost-Benefit Relations of the Future Environmental Related Developments Strategies in the Hungarian Energy Sector

Open access

Abstract

In the case of economic and social wealth, it is strategically essential to provide reliable energy sources which are available in long-term. Setting an energy network which suits the sustainable criteria might take a long time. Therefore, it is important to make decisions on the energy sector in advance. The Hungarian National Energy strategy elaborated on certain scenarios towards 2030, which describe the possible electricity generation opportunities up to 2020 and 2030. For 2020, there is already an accurate recommendation, but in case of the 2030 targets, there are several ways for innovation. Out of all, the realization of the “Nuclear-Carbon-Green” scenario seems most likely to be implemented. It implies the obvious involvement of nuclear energy potential development in the future strategies. Considering this trend, the present study divides the mentioned strategy into “Nuclear-Carbon” and “Nuclear-Green” scenarios to compare their long-term efficiency by economic means.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Acaravci A.Ozturk I. On the relationship between energy consumption CO2emissions and economic growth in Europe. Elsevier Energy Volume 35 (2010) Issue 12 December 2010. pp. 5412-5420 DOI: 10.1016/j.energy.2010.07.009

  • [2] IEA. Key World Energy Statistics. International Energy Agency 2015 Paris

  • [3] IEA. World Energy Investment Outlook Special Report. International Energy Agency 2014 Paris

  • [4] Eurostat. Energy balance sheets 2013 data. Eurostat statistical books 2015 edition. Publication Office of the European Union Luxembourg. DOI: 10.2785/388553

  • [5] Moreno B. López A. Álvarez M. The electricity prices in the European Union. The role of renewable energies and regulatory electric market reforms. Elsevier Energy Volume 48 (2012) Issue 1 pp. 307-313 DOI:10.1016/j.energy.2012.06.059

  • [6] NDA . Magyarország Megújuló Energia Hasznosítási Cselekvési Terve 2010-2020. Nemzeti Fejlesztési Minisztérium Budapest 2011

  • [7] Payne J.E. Taylor J.P. Nuclear Energy Consumption and Economic Growthinthe U.S.: An Empirical Note. Energy Sources Part B: Economics Planning and Policy Volume 5 (2010) Issue 3 pp. 301-307. DOI: 10.1080/1556724080253395

  • [8] Birol F. Argiri M. World energy prospects to 2020. Elsevier Energy Volume 24 (1999) Issue 11 November 1999. pp. 905-918 DOI:10.1016/S0360-5442(99)00045-6

  • [9] Jewell J. Ready for nuclear energy?: An assessment of capacities and motivations for launching new national nuclear power programs. Elsevier Energy Policy Volume 39 (2011) Issue 3 pp. 1041-1055. DOI: 10.1016/j.enpol.2010.10.041

  • [10] NDA. Nemzeti Energiastratégia 2030. Nemzeti Fejlesztési Minisztérium Budapest 2012

  • [11] Lind R. C. Intergenerational equity discounting and the role of cost-benefit analysis in evaluation global climate policy. Elsevier Energy Policy Volume 23 (1995) Issues 4-5 pp. 379-389. DOI: 10.1016/0301-4215(95)90162-Z

  • [12] Pigou A.C. The Economics of Welfare MacMillan 1920 Part II. London

  • [13] Gohar L.K. Shine K.P. Equivalent CO2 and its use in understanding the climate effects of increased greenhouse gas concentrations. Weather Volumes 62 (2007) pp. 307-311. DOI: 10.1002/wea.103

  • [14] Bardford M. B. Salling K. B. Leleur S. Composite decision support by combining cost-benefit and multi-criteria decision analysis. Decision Support Systems Volume 51 (2011) Issue 1 April 2011 pp. 167-175. DOI: 10.1016/j.dss.2010.12.005

  • [15] Fogarassy Cs. Horvath B. Kovacs A. The cost benefit analysis of low-carbon transportation development opportunities for the 2020-2030 EU programming period. Hungarian Agricultural Engineering Volume 28 (2015) pp. 25-29. DOI: 10.17676/HAE.2015.28.25

  • [16] Peters G.L. Marland G.Quéré C.L. Boden T. Canadell J.G.Raupach M.R. Rapid growthin CO2emissionsafterthe 2008-2009 global financial crisis. Nature Climate Change Volume 2 (2012) pp. 2-4 DOI: 10.1038/nclimate1332

  • [17] Forsberg C.W. Sustainability by combining nuclear fossil and renewable energy sources. Elsevier Progressin Nuclear Energy Volume 51 (2009) Issue 1 pp. 192-200. DOI: 10.1016/j.pnucene.2008.04.002

  • [18] Borocz M. Szoke L. Horvath B. Possible climate friendly innovation ways and technical solutions in the agricultural sector for 2030. Hungarian Agricultural Engineering Volume 29 (2016) Issue 1. pp. 55-59. DOI: 10.17676/HAE.2016.29.55

  • [19] Dittmar M. Nuclear energy: Status and future limitations. Elsevier Energy Volume (2012) 37 Issue 1 pp. 35-40. DOI: 10.1016/j.energy.2011.05.040

  • [20] De Groot J.Steg L. Poortinga W. Values Perceived Risks and Benefits and Acceptability of Nuclear Energy. Risk Analysis Volume 33 (2012) Issue 2. pp. 307-317. DOI: 10.1111/j.1539-6924.2012.01845.x

  • [21] Fogarassy Cs. Low-carbon economy. Monográfia. L’Harmattan Publisher Budapest 2012 ISBN: 978-963-236-541-1

Search
Journal information
Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 194 106 3
PDF Downloads 98 64 0