The Cost-Benefit Relations of the Future Environmental Related Developments Strategies in the Hungarian Energy Sector

Csaba Fogarassy 1  and Attila Kovacs 2
  • 1 Climate Change Economics Research Centre, Szent István University, Gödöllő, Hungary
  • 2 Department of Operations Management and Logistics, Szent István University, Gödöllő, Hungary

Abstract

In the case of economic and social wealth, it is strategically essential to provide reliable energy sources which are available in long-term. Setting an energy network which suits the sustainable criteria might take a long time. Therefore, it is important to make decisions on the energy sector in advance. The Hungarian National Energy strategy elaborated on certain scenarios towards 2030, which describe the possible electricity generation opportunities up to 2020 and 2030. For 2020, there is already an accurate recommendation, but in case of the 2030 targets, there are several ways for innovation. Out of all, the realization of the “Nuclear-Carbon-Green” scenario seems most likely to be implemented. It implies the obvious involvement of nuclear energy potential development in the future strategies. Considering this trend, the present study divides the mentioned strategy into “Nuclear-Carbon” and “Nuclear-Green” scenarios to compare their long-term efficiency by economic means.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Acaravci A.,Ozturk I. On the relationship between energy consumption, CO2emissions and economic growth in Europe. Elsevier, Energy, Volume 35 (2010), Issue 12, December 2010. pp. 5412-5420, DOI: 10.1016/j.energy.2010.07.009

  • [2] IEA. Key World Energy Statistics. International Energy Agency, 2015, Paris

  • [3] IEA. World Energy Investment Outlook, Special Report. International Energy Agency, 2014, Paris

  • [4] Eurostat. Energy balance sheets, 2013 data. Eurostat statistical books, 2015 edition. Publication Office of the European Union, Luxembourg. DOI: 10.2785/388553

  • [5] Moreno B., López A., Álvarez M. The electricity prices in the European Union. The role of renewable energies and regulatory electric market reforms. Elsevier, Energy, Volume 48 (2012), Issue 1, pp. 307-313 DOI:10.1016/j.energy.2012.06.059

  • [6] NDA . Magyarország Megújuló Energia Hasznosítási Cselekvési Terve 2010-2020. Nemzeti Fejlesztési Minisztérium, Budapest, 2011

  • [7] Payne J.E., Taylor J.P. Nuclear Energy Consumption and Economic Growthinthe U.S.: An Empirical Note. Energy Sources, Part B: Economics, Planning, and Policy, Volume 5 (2010), Issue 3, pp. 301-307. DOI: 10.1080/1556724080253395

  • [8] Birol F., Argiri M. World energy prospects to 2020. Elsevier, Energy, Volume 24 (1999), Issue 11, November 1999. pp. 905-918, DOI:10.1016/S0360-5442(99)00045-6

  • [9] Jewell J. Ready for nuclear energy?: An assessment of capacities and motivations for launching new national nuclear power programs. Elsevier, Energy Policy, Volume 39 (2011), Issue 3, pp. 1041-1055. DOI: 10.1016/j.enpol.2010.10.041

  • [10] NDA. Nemzeti Energiastratégia 2030. Nemzeti Fejlesztési Minisztérium, Budapest, 2012

  • [11] Lind R. C. Intergenerational equity, discounting, and the role of cost-benefit analysis in evaluation global climate policy. Elsevier, Energy Policy, Volume 23 (1995), Issues 4-5, pp. 379-389. DOI: 10.1016/0301-4215(95)90162-Z

  • [12] Pigou, A.C. The Economics of Welfare, MacMillan, 1920 Part II., London

  • [13] Gohar L.K., Shine K.P. Equivalent CO2 and its use in understanding the climate effects of increased greenhouse gas concentrations. Weather, Volumes 62 (2007), pp. 307-311. DOI: 10.1002/wea.103

  • [14] Bardford M. B., Salling K. B., Leleur S. Composite decision support by combining cost-benefit and multi-criteria decision analysis. Decision Support Systems, Volume 51 (2011), Issue 1, April 2011, pp. 167-175. DOI: 10.1016/j.dss.2010.12.005

  • [15] Fogarassy, Cs., Horvath B., Kovacs A. The cost benefit analysis of low-carbon transportation development opportunities for the 2020-2030 EU programming period. Hungarian Agricultural Engineering, Volume 28 (2015), pp. 25-29. DOI: 10.17676/HAE.2015.28.25

  • [16] Peters G.L., Marland G.,Quéré C.L., Boden T., Canadell J.G.,Raupach M.R. Rapid growthin CO2emissionsafterthe 2008-2009 global financial crisis. Nature Climate Change, Volume 2 (2012), pp. 2-4 DOI: 10.1038/nclimate1332

  • [17] Forsberg C.W. Sustainability by combining nuclear, fossil, and renewable energy sources. Elsevier, Progressin Nuclear Energy, Volume 51 (2009), Issue 1, pp. 192-200. DOI: 10.1016/j.pnucene.2008.04.002

  • [18] Borocz M., Szoke L., Horvath B. Possible climate friendly innovation ways and technical solutions in the agricultural sector for 2030. Hungarian Agricultural Engineering, Volume 29 (2016), Issue 1. pp. 55-59. DOI: 10.17676/HAE.2016.29.55

  • [19] Dittmar M. Nuclear energy: Status and future limitations. Elsevier, Energy, Volume (2012) 37, Issue 1, pp. 35-40. DOI: 10.1016/j.energy.2011.05.040

  • [20] De Groot J.,Steg L., Poortinga W. Values, Perceived Risks and Benefits, and Acceptability of Nuclear Energy. Risk Analysis, Volume 33 (2012), Issue 2. pp. 307-317. DOI: 10.1111/j.1539-6924.2012.01845.x

  • [21] Fogarassy, Cs. Low-carbon economy. Monográfia. L’Harmattan Publisher, Budapest, 2012, ISBN: 978-963-236-541-1

OPEN ACCESS

Journal + Issues

Search