Genetic Disorders Affecting Tubulin Cytoskeleton

Open access


The tubulin cytoskeleton is vital for maintenance and dynamics of eukaryotic cells and molecular defects in its components can lead to serious conditions. So far, mutations in genes for alpha-, beta- and gamma-tubulin, motor proteins of the kinesin and dynein family, microtubule-associated and centrosomal proteins have been found to cause disorders in humans. Most phenotypic effects are on the nervous system, leading to abnormal brain development (e.g. lissencephaly and microcephaly) or to neurodegeneration in later life (e.g. amyotrophic lateral sclerosis and frontotemporal dementia). Another group of disorders include the ciliopathies, caused by defects in the axoneme. They include primary ciliary dyskinesia (immotile cilia syndrome), which is characterized by chronic respiratory infections, male infertility and randomly established left-right asymmetry. In most cases, the underlying defects are in axonemal dynein. Mutations in genes for centrosomal components have been shown to cause cortical dysplasia and dwarfism by disrupting the mitotic spindle, and some cases of infertility with maturation arrest are likely to be caused by unidentified mutations damaging the meiotic spindle. In view of these diverse phenotypes, knowledge about mutations affecting tubulin cytoskeleton becomes increasingly useful for clinical practice.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Wade RH. On and around microtubules: an overview. Mol Biotechnol. 2009;43(2):177-91.

  • 2. Fırat-Karalar EN Stearns T. The centriole duplication cycle. Philos Trans R Soc Lond B Biol Sci. 2014;369(1650): pii: 20130460.

  • 3. Gardner MK Zanic M Howard J. Microtubule catastrophe and rescue. Curr Opin Cell Biol. 2013;25(1):14-22.

  • 4. Kamath K Oroudjev E Jordan MA. Determination of microtubule dynamic instability in living cells. Methods Cell Biol. 2010;97:1-14.

  • 5. Bryantseva SA Zhapparova ON. Bidirectional transport of organelles: unity and struggle of opposing motors. Cell Biol Int. 2012;36(1):1-6.

  • 6. Inaba K. Molecular basis of sperm flagellar axonemes: structural and evolutionary aspects. Ann N Y Acad Sci. 2007;1101:506-26.

  • 7. Romaniello R Arrigoni F Bassi MT Borgatti R. Mutations in α- and β-tubulin encoding genes: implications in brain malformations. Brain Dev. 2015;37(3):273-80.

  • 8. Sohal AP Montgomery T Mitra D Ramesh V. TUBA1A mutation-associated lissencephaly: case report and review of the literature. Pediatr Neurol. 2012;46(2):127-31.

  • 9. Keays DA Tian G Poirier K Huang GJ Siebold C Cleak J et al. Mutations in alpha-tubulin cause abnormal neuronal migration in mice and lissencephaly in humans. Cell. 2007;128(1):45-57.

  • 10. Smith BN Ticozzi N Fallini C Gkazi AS Topp S Kenna KP et al. Exome-wide rare variant analysis identifies TUBA4A mutations associated with familial ALS. Neuron. 2014;84(2):324-31.

  • 11. Simons C Wolf NI McNeil N Caldovic L Devaney JM Takanohashi A et al. A de novo mutation in the β-tubulin gene TUBB4A results in the leukoencephalopathy hypomyelination with atrophy of the basal ganglia and cerebellum. Am J Hum Genet. 2013;92(5):767-73.

  • 12. Yuba-Kubo A Kubo A Hata M Tsukita S. Gene knockout analysis of two gamma-tubulin isoforms in mice. Dev Biol. 2005;282(2):361-73.

  • 13. Poirier K Lebrun N Broix L Tian G Saillour Y Boscheron C et al. Mutations in TUBG1 DYNC1H1 KIF5C and KIF2A cause malformations of cortical development and microcephaly. Nat Genet. 2013;45(6):639-47.

  • 14. Brandt R. The tau proteins in neuronal growth and development. Front Biosci. 1996;1:d118-30.

  • 15. Lei P Ayton S Moon S Zhang Q Volitakis I Finkelstein DI et al. Motor and cognitive deficits in aged tau knockout mice in two background strains. Mol Neurodegener. 2014;9:29.

  • 16. McMurray CT. Neurodegeneration: diseases of the cytoskeleton? Nature. 2000;7(10):861-5.

  • 17. Kovacs GG. Invited review: Neuropathology of tauopathies: principles and practice. Neuropathol Appl Neurobiol. 2015;41(1):3-23.

  • 18. Bartoli KM Jakovljevic J Woolford JL Jr Saunders WS. Kinesin molecular motor Eg5 functions during polypeptide synthesis. Mol Biol Cell. 2011;22(18):3420-30.

  • 19. Mirzaa GM Enyedi L Parsons G Collins S Medne L Adams C et al. Congenital microcephaly and chorioretinopathy due to de novo heterozygous KIF11 mutations: five novel mutations and review of the literature. Am J Med Genet A. 2014;164A(11):2879-86.

  • 20. Dagoneau N Goulet M Geneviève D Sznajer Y Martinovic J Smithson S et al. DYNC2H1 mutations cause asphyxiating thoracic dystrophy and short rib-polydactyly syndrome type III. Am J Hum Genet. 2009;84(5):706-11.

  • 21. Schmidts M Arts HH Bongers EM Yap Z Oud MM Antony D et al. Exome sequencing identifies DYNC2H1 mutations as a common cause of asphyxiating thoracic dystrophy (Jeune syndrome) without major polydactyly renal or retinal involvement. J Med Genet. 2013;50(5):309-23.

  • 22. Huber C Cormier-Daire V. Ciliary disorder of the skeleton. Am J Med Genet C Semin Med Genet. 2012;160C(3):165-74.

  • 23. Leigh MW Pittman JE Carson JL Ferkol TW Dell SD Davis SD et al. Clinical and genetic aspects of primary ciliary dyskinesia/Kartagener syndrome. Genet Med. 2009;11(7):473-87.

  • 24. Stanislavov R Marinova Ts Markova M. [The electron microscopic pathology of human spermatozoa]. Akush Ginekol (Sofiia). 1998;37(3):44-6. Bulgarian

  • 25. McGrath J Brueckner M. Cilia are at the heart of vertebrate left-right asymmetry. Curr Opin Genet Dev. 2003;13(4):385-92.

  • 26. Kurkowiak M Ziętkiewicz E Witt M. Recent advances in primary ciliary dyskinesia genetics. J Med Genet. 2015;52(1):1-9.

  • 27. Rauch A Thiel CT Schindler D Wick U Crow YJ Ekici AB et al. Mutations in the pericentrin (PCNT) gene cause primordial dwarfism. Science. 2008;319(5864):816-9.

  • 28. Lange R Krause W Engel W. Analyses of meiotic chromosomes in testicular biopsies of infertile patients. Hum Reprod. 1997;12(10):2154-8.

  • 29. Mrazek M Fulka J Jr. Failure of oocyte maturation: possible mechanisms for oocyte maturation arrest. Hum Reprod. 2003;18(11):2249-52.

  • 30. Schmiady H Neitzel H. Arrest of human oocytes during meiosis I in two sisters of consanguineous parents: first evidence for an autosomal recessive trait in human infertility: Case report. Hum Reprod. 2002;17(10):2556-9.

  • 31. Nikolova V Chakarova I Zhivkova R Markova M Dimitrov R Delimitreva S. [Comparison of in vitro matured oocytes from two inbred mouse strains and their F1 hybrids]. Embryologia (Sofia). 2012;7(1):10-14. Bulgarian

Journal information
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 627 311 5
PDF Downloads 334 207 0