Synthesis and Photocatalytic Properties of Nitrogen Modified Titanium Dioxide


Pure and nitrogen-doped titanium dioxide (N-doped TiO2) photocatalysts were prepared by non-aqueous sol-gel method by means of the reaction between titanium (IV) chloride (TiCl4) and C6H5CH2 OH (benzyl alcohol), used as precursors and urea serving as a nitrogen source. The phase formation and short-range order of the resulting particles were characterized by X-ray powder diffraction (XRD) and infrared (IR) spectroscopy. The crystallite size of as-prepared composite powders was in the range 12-35 nm. The aim of this work was to investigate the efficiency of N-doped TiO2 as a photocatalyst in degradation of model organic pollutants - dyes Reactive Black 5 (RB5) and Malachite Green (MG), under ultraviolet (UV) and visible (Vis) irradiation. 0ur results indicated that synthesized N-TiO2 nanocomposites slightly improved the photocatalytic activity under UV irradiation, compared to the pure titanium dioxide (TiO2), and had no effect under Vis light illumination.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Nolan NT, Synnott DW, Seery MK, Hinder SJ, Wassenhoven AV, Pillai SC. Effect of N-doping on the photocatalytic activity of sol-gel TiO2. J Hazard Mater. 2012;211-212:88-94.

  • 2. Abramovic BF, Sojic DV, Anderluh VB, Abazovic ND, Comor MI. Nitrogen-doped TiO2 suspensions in photocatalytic degradation of mecoprop and (4-chloro-2-methylphenoxy) acetic acid herbicides using various light sources. Desalination. 2009; 244:293-302.

  • 3. Buzby S, Barakat MA, Lin H, Ni C, Rykov SA, Chen J G, Shah SI. Visible light photocatalysis with nitrogen-doped titanium dioxide nanoparticles prepared by plasma assisted chemical vapor deposition. J Vac Sci Technol B Nanotechnol Microelectron. 2006;24(3):1210-14.

  • 4. Cong Ye, Zhang J, Chen F, Anpo M. Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity. J Phys Chem C. 2007; 111(19):6976-82.

  • 5. Burda C, Lou Y, Chen X, Samia A C S, Stout J, Gole J L. Enhanced nitrogen doping in TiO2 nanoparticles. Nano Letters. 2003;3(8):1049-51.

  • 6. Factorovich M, Guz L, Candal R. N-TiO2: chemical synthesis and photo catalysis. Adv Phys Chem. 2011;1-8.

  • 7. Pelaez M, Nolan N, Pillai S, Seery M, Falaras P, Kontos AG, et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ. 2012;(125):331-49.

  • 8. Sathish M, Viswanathan B, Viswanath RR, Gopinath CS. Synthesis, characterization, electronic structure, and photocatalytic activity of nitrogen-doped TiO2 nanocatalyst. Chem Mater. 2005;17(25):6349-53.

  • 9. Kusumawardani C, Indriana K, Narsito Synthesis of nanocrystalline N-doped TiO2 and its application on high efficiency of dye-sensitized solar cells. Sc J UBU. 2010;1(1):1-8.

  • 10. Franco ALM, Zambrano G, Gomez ME. Photocatalytic activity of nitrogen-doped and undoped titanium dioxide sputtered thin films. Superf vacio. 2012; 25(3):161-5.

  • 11. Yates HM, Nolan MG, Sheel DW, Pemble ME. The role of nitrogen doping on the development of visible light-induced photocatalytic activity in thin TiO2 films grown on glass by chemical vapour deposition. J Photochem Photobiol A Chem. 2006;179(1-2):213-23.

  • 12. Mrowetz M, Balcerski W, Colussi AJ, Hoffmann MR. 0xidative power of nitrogen-doped TiO2 photocatalysts under visible illumination. J Phys Chem B. 2004;108(45):17269-73.

  • 13. Stoyanova AM, Ivanova NK, Bachvarova-Nedelcheva AD, Iordanova RS. Synthesis and photocatalytic performance of Fe (III), N co- doped TiO2 nanoparticles. Bulgarian Chemical Communications. 2015;47(1):330-5.

  • 14. Stoyanova A, Hitkova H, Bachvarova-Nedelcheva A, Iordanova R, Ivanova N, Sredkova M. Synthesis and antibacterial activity of TiO2 /ZnO nanocomposites prepared via nonhydrolytic route. Journal of Chemical Technology and Metallurgy. 2013;48(2):154-61.

  • 15. Scherrer P. [Determination ofthe size andinternal structure of colloidal particles using X-rays]. In: Chemische Technologie in Einzeldarstellungen book series (CHTE). Berlin: Springer-Verlag Berlin Heidelberg 1912. 2018. p. 26:387-409. German.

  • 16. Cheng X, Yu X, Xing Z, Yang L. Synthesis and characterization of N-doped TiO2 and its enhanced visible-light photocatalytic activity. Arab J Chem. 2016; 9 (2):S1706-11.

  • 17. Yang G, Jiang Z, Shi H, Xiao T, Yang Z. Preparation of highly visible-light active N-doped TiO2 photocatalyst. J Mater Chem. 2010;20:5301-9.

  • 18. Murashkevich A, Lavitskaya AS, Barannikova TI, Zharskii IM. Infrared absorption spectra and structure of TiO2-SiO2 composites. J Appl Spectrosc.2008;75(5):730-4.

  • 19. Bojinova A, Kralchevska R, Poulios I, Dushkin C. Anatase/rutile TiO2 composites: influence of the mixing ratio on the photocatalytic degradation of Malachite Green and 0range II in slurry. Mater Chem Phys. 2007;106(2-3):187-92.

  • 20. Muneer M, Bahnema D. Semiconductor-mediated photocatalysed degradation of two selected pesticide derivatives, terbacil and 2,4,5-tribromoimidazole, in aqueous suspension. Water Sci Technol. 2001;44(5):331-7.

  • 21. Allen NS, Mahdjoub N, Vishnyakov V, Kelly PJ, Kriek RJ. The effect of crystalline phase (anatase, brookite and rutile) and size on the photocatalytic activity of calcined polymorphic titanium dioxide (TiO2). Polym Degrad Stab. 2018;150:31-6.

  • 22. Sun H, Bai Y, Cheng Y, Jin W, Xu N. Preparation and characterization of visible-light-driven carbon-sulfur-codoped TiO2 photocatalysts. Ind Eng Chem. 2006;45(14):4971-6.

  • 23. Irie H, Watanabe Y, Hashimoto K. Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders. J Phys Chem B. 2003;107 (23):5483-6.

  • 24. Lee S, Cho I-S, Lee DK, Kim DW, Noh TH, Kwak CH, et al. Influence of nitrogen chemical states on photocatalytic activities of nitrogen-doped TiO2 nanoparticles under visible light. J Photochem Photobiol A: Chem. 2010;213(2-3):129-35.


Journal + Issues