Timing of Invasion by Africanized Bees Coincides with Local Extinction of a Specialized Pollinator of a Rare Poppy in Utah, USA

Open access

Abstract

The introduction of exotic species can have profound impacts on mutualisms between native species in invaded areas. However, determining whether a new invader has impacted native species depends on accurately reconstructing the invasion timing. The arrival of Africanized honey bees (AHB) in southern Utah at some point between 1994 and 2011 has recently been implicated in the local extinction of Perdita meconis, a native specialist pollinator of an endangered poppy, Arctomecon humilis. Although AHBs were purportedly first detected in southern Utah in 2008, their presence in nearby Nevada, Arizona, and New Mexico by 1998–2001 suggests that they may have been present in Utah much earlier. We refined the arrival date of AHBs in southern Utah by using a molecular marker to determine maternal ancestry of museum specimens collected between 2000 and 2008. We found that AHBs were present in southern Utah from 2000 onwards, advancing the arrival date of this invader by at least 8 years. This lends credence to the hypothesis that AHBs played a critical role in the local extinction of P. meconis in Utah. This work also highlights the importance of vouchering even common species such as honey bees in museum collections to serve future research needs.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Burfitt C. (2009). African bee detected in southern Utah. Retrieved 10-Dec-2018 from http://www.ag.utah.gov/animals/80-plants-and-pests/bees-and-beekeeping/320-african-bee-detected-in-southern-utah.html

  • Cleary D. Szalanski A. L. Trammel C. E. Williams M.K. Tripodi A. D. Downey D. (2018). Mitochondrial DNA variation of feral honey bees (Apis mellifera L.) from Utah (USA). Journal of Apicultural Science62(2) 223-232. DOI: 10.2478/JAS-2018-0019

  • Domínguez-Ayala R. Moo-Valle H. May-Itzá W. d. J. Medina-Peralta S. Quezada-Euán J. J. G. (2016). Stock composition of northern neotropical honey bees: mitotype and morphotype diversity in Mexico (Hymenoptera: Apidae). Apidologie47(5) 642-652. http://doi.org/10.1007/s13592-015-0414-6

  • Geslin B. Gauzens B. Baude M. Dajoz I. Fontaine C. Henry M. . . . Vereecken N. (2017). Massively introduced managed species and their consequences for plant-pollinator interactions. In Advances in Ecological Research 57. (pp. 147-199). New York NY: Oxford Academic Press.

  • Gill N. S. & Sangermano F. (2016). Africanized honey-bee habitat suitability: a comparison between models for southern Utah and southern California. Applied Geography76 14-21. http://doi.org/10.1016/j.apgeog.2016.09.002

  • Griswold T. (1993). New species of Perdita (Pygoperdita) Timberlake of the P. californica species group (Hymenoptera: Andrenidae). The Pan-Pacific Entomologist (USA)69 183-189.

  • Hicks R. C. (1999). Africanized honey bees in Clark County Nevada. In Proceedings of the 52nd Annual Meeting of the Utah Mosquito Abatement Association (pp. 1-3). Park City Utah.

  • Hodgson E. W. Stanley C. A. Roe A. H. & Downey D. (2010). Africanized honey bees. Utah Pests Fact Sheet ENT-20-09. Retrieved 10-Dec-2018 from https://utahpests.usu.edu/bees/africanized

  • Jarnevich C. S. Esaias W. E. Ma P. L. A. Morisette J. T. Nickeson J. E. Stohlgren T. J. . . . Tan B. (2014). Regional distribution models with lack of proximate predictors: Africanized honeybees expanding north. Diversity and Distributions20(2) 193-201. http://doi.org/10.1111/ddi.12143

  • Kato M. & Kawakita A. (2004). Plant-pollinator interactions in New Caledonia influenced by introduced honey bees. American Journal of Botany91(11) 1814-1827. http://doi.org/10.3732/ajb.91.11.1814

  • Kato M. Shibata A. Yasui T. & Nagamasu H. (1999). Impact of introduced honeybees Apis mellifera upon native bee communities in the Bonin (Ogasawara) Islands. Researches on Population Ecology41(2) 217-228. http://doi.org/10.1007/s101440050025

  • Kraus F. B. Franck P. & Vandame R. (2007). Asymmetric introgression of African genes in honeybee populations (Apis mellifera L.) in Central Mexico. Heredity99(2) 233-240. http://doi.org/10.1038/sj.hdy.6800988

  • Lees D. C. Lack H. W. Rougerie R. Hernandez-Lopez A. Raus T. Avtzis N. D. . . . Lopez-Vaamonde C. (2011). Tracking origins of invasive herbivores through herbaria and archival DNA: the case of the horse-chestnut leaf miner. Frontiers in Ecology and the Environment9(6) 322-328. http://doi.org/10.1890/100098

  • Lin W. McBroome J. Rehman M. & Johnson B. R. (2018). Africanized bees extend their distribution in California. PLoS One13(1) e0190604. http://doi.org/10.1371/journal.pone.0190604

  • Lister A. M. & Climate Change Research Group. (2011). Natural history collections as sources of longterm datasets. Trends in Ecology & Evolution26(4) 153-154. http://doi.org/10.1016/j.tree.2010.12.009

  • Mallinger R. E. Gaines-Day H. R. & Gratton C. (2017). Do managed bees have negative effects on wild bees?: A systematic review of the literature. PLoS One12(12) e0189268. http://doi.org/10.1371/journal.pone.0189268

  • Medina Flores C. A. Guzmán Novoa E. Hamiduzzaman M. Aguilera Soto J. I. Carlos L. & Antonio M. (2017). Africanization of honey bees (Apis mellifera) in three climatic regions of northern Mexico. Veterinaria México OA2(4) 1-9. http://doi.org/10.21753/vmoa.2.4.353

  • Michener C. D. (1975). The Brazilian bee problem. Annual Review of Entomology 20(1) 399-416. http://doi.org/10.1146/annurev.en.20.010175.002151

  • Moritz R. F. A. Härtel S. & Neumann P. (2005). Global invasions of the western honeybee (Apis mellifera) and the consequences for biodiversity. Ecoscience12(3) 289-301. http://doi.org/10.2980/i1195-6860-12-3-289.1

  • Portman Z. M. Tepedino V. J. & Tripodi A. D. (2018). Persistence of an imperiled specialist bee and its rare host plant in a protected area. Insect Conservation and Diversity Online 30 October 2018 http://doi.org/10.1111/icad.12334

  • Portman Z. M. Tepedino V. J. Tripodi A. D. Szalanski A. L. Durham S. L. (2018). Local extinction of a rare plant pollinator in Southern Utah (USA) associated with invasion by Africanized honey bees. Biological Invasions20(3) 593-606. http://doi.org/10.1007/s10530-017-1559-1

  • Quezada-Euán J. J. G. Pérez-Castro E. E. & May-Itzá W. d. J. (2003). Hybridization between European and African-derived honeybee populations (Apis mellifera) at different altitudes in Peru. Apidologie34(3) 217-225. http://doi.org/10.1051/apido:2003010

  • Rowles A. D. & O’Dowd D. J. (2009). New mutualism for old: indirect disruption and direct facilitation of seed dispersal following Argentine ant invasion. Oecologia158(4) 709-716. http://doi.org/10.1007/s00442-008-1171-2

  • Sambrook J. & Russell D. W. (2001). Molecular Cloning. Cold Spring Harbor NY: Cold Spring Harbor Laboratory Press.

  • Santos G. M. d. M. Aguiar C. M. Genini J. Martins C. F. Zanella F. C. Mello M. A. (2012). Invasive Africanized honeybees change the structure of native pollination networks in Brazil. Biological Invasions14(11) 2369-2378. http://doi.org/10.1007/s10530-012-0235-8

  • Shaffer H. B. Fisher R. N. & Davidson C. (1998). The role of natural history collections in documenting species declines. Trends in Ecology & Evolution13(1) 27-30. http://doi.org/10.1016/S0169-5347(97)01177-4

  • Southwick E. Roubik D. & Williams J. (1990). Comparative energy balance in groups of Africanized and European honey bees: ecological implications. Comparative Biochemistry and Physiology. A Comparative Physiology97(1) 1-7. http://doi.org/10.1016/0300-9629(90)90713-3

  • Spivak M. (1992). The relative success of Africanized and European honey-bees over a range of life-zones in Costa Rica. Journal of Applied Ecology 29(1) 150-162. http://doi.org/10.2307/2404358

  • Suarez A. V. & Tsutsui N. D. (2004). The value of museum collections for research and society. Bioscience54(1) 66-74. http://doi.org/10.1641/0006-3568(2004)054[0066:tvomcf]2.0.co;2

  • Szalanski A. L. & McKern J. A. (2007). Multiplex PCR-RFLP diagnostics of the Africanized honey bee (Hymenoptera : Apidae). Sociobiology50(3) 939-945.

  • Taylor O. R. (1977). The past and possible future spread of Africanized honeybees in the Americas. Bee World58(1) 19-30. http://doi.org/10.1080/0005772x.1977.11097632

  • Taylor O. R. & Spivak M. (1984). Climatic limits of tropical African honeybees in the Americas. Bee World65(1) 38-47. http://doi.org/10.1080/0005772x.1984.11098769

  • Tepedino V. J. Mull J. Griswold T. L. & Bryant G. (2014). Reproduction and pollination of the endangered dwarf bear-poppy Arctomecon humilis (Papaveraceae) across a quarter century: unraveling of a pollination web? Western North American Naturalist74(3) 311-325. http://doi.org/10.3398/064.074.0306

  • Traveset A. & Richardson D. M. (2006). Biological invasions as disruptors of plant reproductive mutualisms. Trends in Ecology & Evolution21(4) 208-216. http://doi.org/10.1016/j.tree.2006.01.006

  • Traveset A. & Richardson D. M. (2014). Mutualistic interactions and biological invasions. Annual Review of Ecology Evolution and Systematics45 89-113. http://doi.org/10.1146/annurev-ecolsys-120213-091857

  • Tripodi A. D. Tepedino V. J. & Portman Z. M. (2018). Collection data for determination of the timing of invasion by Africanized bees closely linked to local extinction of a specialized pollinator of a rare poppy in Utah. v1. Mendeley Data. http://doi.org/10.17632/8427vsmd66.1

  • United States Fish and Wildlife Service. (1979). Endangered and threatened wildlife and plants; determination that Arctomecon humilis is an endangered species. Federal Register44(216) 50 CFR Part 17 64250-64252.

  • Utah Department of Agriculture and Food. (2017). Utah AHB Distribution 2017. Retrieved 03-Mar2018 from http://www.ag.utah.gov/documents/UTAHB.pdf

  • Visscher P. K. Vetter R. S. & Baptista F. C. (1997). Africanized bees 1990-1995: Initial rapid invasion has slowed in the U.S. California Agriculture51(1) 22-24. http://doi.org/10.3733/ca.v051n01p22

  • Winston M. L. (1992). The biology and management of Africanized honey bees. Annual Review of Entomology37(1) 173-193. http://doi.org/10.1146/annurev.en.37.010192.001133

Search
Journal information
Impact Factor


IMPACT FACTOR 2018: 0.804
5-year IMPACT FACTOR: 1.007

CiteScore 2018: 0.98

SCImago Journal Rank (SJR) 2018: 0.362
Source Normalized Impact per Paper (SNIP) 2018: 0.645

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 11 11 11
PDF Downloads 18 18 18