Royal Jelly Aliphatic Acids Contribute to Antimicrobial Activity of Honey

Open access

Abstract

Honey is valued for its therapeutic qualities which are attributed among others to its antibacterial multifactorial properties. However, all the factors that influence these properties have not been identified. The present study is focused on the antibacterial action of fatty acids originating from royal jelly, the larval food of honeybees. Aliphatic C8-C12 acids characteristic of this bee product had previously been identified in more than fifty different samples of honey originating from seven countries and in eleven samples of Polish herbhoney. Experiments were performed to ascertain the influence of acidity on the antimicrobial activity of the acids. In acidic nutrient media all tested aliphatic hydroxyacids and unsaturated dicarboxylic acids demonstrated antibacterial action against different microbes with minimal inhibitory concentrations between 0.048 and 3.125 mM. Our results confirm that part of the antibacterial activity of honey contributes to these compounds of bee origin.

Aljadi, A.M., & Yusoff, K. M. (2003). Isolation and identification of phenolic acids in Malaysian honey with antibacterial properties. Turkish Journal of Medicine, 33, 229-236.

Al-Waili, N. S., Salom, K., Butler, G., & Al Ghamdi, A. A. (2011). Honey and microbial infections: A review supporting the use of honey for microbial control. Journal of Medicinal Food, 14, 1079-1096. DOI:10.1089/jmf.2010.0161

Barker, S. A., Forster, A. B., Lamb, D. C., & Hodgson, N. (1959). Identification of 10-hydroxy-Δ2-dece-noic acid in royal jelly. Nature, 183, 996-997. DOI: 10.1038/18399a0

Blum, M. S., Novak, A. F., & Taber, S. (1959). 10-Hydroxy-Δ2-decenoic acid, an antibiotic found in royal jelly. Science, 130, 452-453.

Bogdanov, S. (1997). Nature and origin of the antibacterial substances in honey. Lebensmittel-Wissenschaft und Technologie, 30, 748-753. DOI: 10.1006/fstl.1997.0259

Brudzinski, K. (2006). Effect of hydrogen peroxide on antibacterial activity of Canadian honeys. Canadian Journal of Microbiology, 52, 1228-1237.

Brudzinski, K., Abubaker, K., St-Martin, L., & Castle., A. (2011). Re-examining the role of hydrogen peroxide in bacteriostatic and bactericidal activities of honey. Frontiers in Microbiology, 2, 213-218. DOI: 10.3389/fmicb.2011.00213

Brudzinski, K., & Sjaarda, C. (2015). Honey glycoproteins containing antimicrobial peptides, Jelleins of the major royal jelly protein 1, are responsible for the cell wall lytic and bactericidal activities of honey. Plos One 10(4):e0120238. DOI: 10.1371/journal.pone.0120238

Brudzynski, K., Miotto, D., Kim, L., Sjaarda, C., Maldonado-Alvarez, L., Fukś, H. (2017). Active macromolecules of honey form colloidal particles essential for honey antibacterial activity and hydrogen peroxide production. Scientific Reports, 7, 7637. DOI:10.1038/s41598-017-08072-0

Bučeková, M., & Majtán, J. (2016). The MRJP1 honey glycoprotein does not contribute to the overall antibacterial activity of natural honey. European Food Research & Technology, 242, 625-629. DOI: 10.1007/s00217-016-02665-5

Butenant, A., & Rembold, H. (1957). Über den Weiselzellenfuttersaft der Honig Biene. Zeitschrift für Physikalische Chemie, 308, 285-299.

Core, E. J., & Schmidt, G. (1979). Useful procedures for the oxidation of alcohols involving pyridinium dichromate in aprotic media. Tetrahedron Letters, 20, 399-402. DOI: 10.1016/S0040-4049(01)93515-4

Fidaleo, M., Zuorro, A., & Lavecchia, R. (2010). Honey: a natural antimicrobial agent against foodborne pathogens? Journal of Biotechnology, 150S, S298. DOI: 10.1016/j.jbiotec.2010.09.253

Fyfe, L., Okoro, P., Paterson, U., Coyle, Sh., McDougall, G. J. (2017). Compositional analysis of Scottish honeys with antibacterial activity against antibiotic-resistant bacteria reveals novel antimicrobial components. LWT – Food Science & Technology, 79, 52-59. doi.org/10.1016/j.lwt.2017.01.023

Giles, S. L., & Laheij, R. J. F. (2017). Successful treatment of persistent Clostridium difficile infection with Manuka honey. International Journal of Antimicrobial Agents, 49, 522-523. doi.org/10.1016/j.ijantimicag.2017.02.005

Grecka, K., Kuś, P. M., Worobo, R. W., & Szweda, P. (2018). Study of the anti-staphylococcal potential of honeys produced in Northern Poland. Molecules, 23, 260. DOI:10.3390/molecules23020260

Isidorov, V.A. (2015). Identification of Biologically and Environmentally Significant Organic Compounds. Mass Spectra and Retention Indices Library of Trimethylsilyl Derivatives. PWN, Warszawa. 429 pp.

Isidorov, V. A., Czyżewska, U., Isidorova, A. G., & Bakier, S. (2009). Gas chromatographic and mass spectrometric characterization of the organic acids extracted from some preparations containing lyophilized royal jelly. Journal of Chromatography B, 877, 3776-3780. DOI: 10.1016/j.jchromb.2009.09.016

Isidorov, V. A., Czyżewska, U., Jankowska, E., & Bakier, S. (2011). Determination of royal jelly acids in honey. Food Chemistry, 124, 387-391. DOI: 10.1016/j.food-chem.2010.06.044

Isidorov, V. A., Bakier, S., & Grzech, J. (2012). Gas chromatographic-mass spectrometric investigation of volatile and extractable compounds of crude royal jelly. Journal of Chromatography B, 885-886, 109-116. DOI: 10.1016/j.jchromb.2011.12.025

Isidorov, V. A., Bagan, R., Bakier, S., & Swiecicka, I. (2015). Chemical composition and antimicrobial activity of Polish herbhoneys. Food Chemistry, 171, 84-88. DOI: 10.1016/j.foodchem.2014.08.112

Kwakman, P. H. S., te Velde, A. A., de Boer, L., Vanden-brouke-Grauls, Ch. M. J. E., Zaat, S. A. J. (2010a). Two major medical honeys have different mechanisms of bactericidal activity. PLoS One, 6, e 17709. DOI: 10.1371/journal.pone.0017709

Kwakman, P. H. S., te Velde, A. A., de Boer, L., Speeijer, D., Vandenbrouke-Grauls, Ch. M. J. E., Zaat, S. A. J. (2010b). How honey kills bacteria. The FASEB Journal, 24, 2567-2582, DOI: 10.1096/fj.09-150789

Lee, S. K., & Lee, H. (2016). Antibacterial activity of solvent fractions and bacterial isolated of Korean domestic honey from different floral sources. Food Science and Biotechnology, 25, 1507-1512. DOI:10.1007/s10068-016-0234-0

Mavric, E., Wittmann, S., Barth, G., & Henle, T. (2008). Identification and quantification of methylglyoxal as the dominant antibacterial constituent of Manuka (Leptospermium scoparium) honeys from New Zealand. Molecular Nutrition & Food Research, 52, 483-489. DOI: 10.1002/mnfr.200700282

McCleskey, C. S., & Melampy, R. M. (1938). Bactericidal activity of “Royal Jelly” of honey bees. Journal of Microbiology, 38, 324.

Melliou, E., & Chinou, I. (2005). Chemistry and bioactivity of royal jelly from Greece. Agricultural and Food Chemistry, 53, 8987-8992. DOI: 10.1021/jf051550p

Mizrahi, H., & Lensky, Y. (Eds.). (1996). Bee products: Properties, applications and apitherapy. NY: Plenum Press.

Moore, O. A., Smith, L. A., Campbell, F., Seers, K., Mc-Quay, H. J., Moore, R. A. (2001). Systematic review of the use of honey as a wound dressing. BMC Complementary & Alternative Medicine, 1, 2-7. http://www.biomedcentral.com/1472-6882/1/2

Russell, K. M., Molan, P. C., Wilkins, A. L., & Holand, P. T. (1988). Identification of some antibacterial constituents of New Zealand Manuka honey. Journal of Agricultural & Food Chemistry, 38, 10-13. DOI: 10.1021/jf00091a002

Skubida, M., Pohorecka, K., Bober, A., & Zdańska, D. (2014). Five-year investigation of Paenibacillus larvae expansion in Polish apiaries: Analyses of results. In: Mat. 51th Sci. Beekeep. Conf., Szczyrk, pp. 55-56.

Sultanbawa, Y., Cozzolino, D., Fuller, S., Cusack, A., Currie, M., Smyth, H. (2015). Infrared spectroscopy as a rapid tool to detect methylglyoxal and antibacterial activity in Australian honeys. Food Chemistry, 172, 207-212. DOI: 10.1016/j.foodchem.2014.09.067

Tan, S.-T., Holland, P. T., Wilkins, A. L., & Molan, P. C. (1988). Extractivities from New Zealand honeys. White clover, manuka and kanuka unifloral honeys. Journal of Agricultural & Food Chemistry, 36, 453-460. DOI: 10.1021/jf00081a012

Taormina, P. J., Niemira, B. A., & Beuchat, L. R. (2001). Inhibitory activity of honey against foodborne pathogens as influenced by the presence of hydrogen peroxide and level of antioxidant power. International Journal of Food Microbiology, 69, 217-225.

Valachová, I., Bučeková, M., & Majtán, J. (2016). Quantification of bee-derived peptide Defensin-1 in honey by competitive enzyme-linked immunosorbent assay, a new approach in honey quality control. Czech Journal of Food Sciences, 34, 233-243. DOI: 10.17221/422/2015-cjfs

Weston, R. J., Brocklebank, L. K., & Lu, Y. R. (2000). Identification and quantitative levels of antibacterial components of some New Zealand honeys. Food Chemistry, 70, 427-435. DOI: 10.1016/S0308-8146(00)00127-8

Isidorov, V. A., Brzozowska, M., Czyżewska, U., & Glinka, Ł. (2009). Gas chromatographic investigation of phenylpropenoid glycerides from aspen (Populus tremula L.) buds. Journal of Chromatography A, 1198–1199: 196–201. DOI: 10.1016/j.chroma.2008.05.038

Isidorov, V., Szczepaniak, L., & Bakier, S. (2014a). Rapid GC/MS determination of botanical precursors of Eurasian propolis. Food Chemistry, 142, 101–110. DOI: 10.1016/j.foodchem.2013.07.032

Isidorov, V., Szczepaniak, L., Wróblewska, A., Pirożnikow, E., Vetchinnikova, L. (2014b). Gas chromatographic-mass spectrometric examination of chemical composition of two Eurasian birch (Betula L.) bud exudates and its taxonomical implication. Biochemical Systematics and Ecology, 52, 41–48. DOI: 10.1016/j.bse.2013.12.008

Isidorov, V.A. (2015). Identification of Biologically and Environmentally Significant Organic Compounds. Mass Spectra and Retention Indices of Trimethylsilyl Derivatives. PWN, Warsaw, 430 pp.

NIST Chemistry WebBook (2013). National Institute of Standards and Technology, Gaithersburg, MD 20899. http://webbook.nist.gov.chemistry.

Journal of Apicultural Science

The Journal of Research Institute of Horticulture and Apicultural Research Association

Journal Information


IMPACT FACTOR 2017: 0.75
5-year IMPACT FACTOR: 1.007

CiteScore 2017: 0.92

SCImago Journal Rank (SJR) 2017: 0.345
Source Normalized Impact per Paper (SNIP) 2017: 0.461

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 117 117 26
PDF Downloads 78 78 21