Effect of Propolis Oral Intake on Physiological Condition of Young Worker Honey Bees, Apis Mellifera L.

Open access


Honey bees collect resin from various plant species and transform it into propolis that is incorporated into the nest. The role of resins in the bee health field is poorly understood. The aim was to evaluate the effects of forced consumption of propolis on the physiological condition and short-term survival of Apis mellifera worker bees. It was tested if the number of circulating hemocytes in hemolymph, the abdominal fat bodies and the hypopharyngeal glands development were affected by the feeding with propolis extracts in laboratory conditions during the warm and the cold seasons. Propolis added to sugar candy was consumed by workers for fourteen days without affecting the bee survival. The number of circulating hemocytes in hemolymph remained constant despite the differential diet during the experiment. However, the development of fat bodies and hypopharyngeal glands was altered by propolis ingestion. The abdominal fat body development in winter bees diminished after fourteen days of propolis consumption, while it increased in summer bees. The hypopharyngeal gland development decreased for the assayed period in workers from both seasons. Our results encourage us to continue exploring this research field and learn how long-term forced ingestion of a plant-derived compound, a non-nutritive substance, can modify physiological bee parameters. A broader understanding of the multiple roles of propolis in the health of the honey bee colonies could be obtained by studying the ways in which it is processed and metabolized and the effect that generates in another physiological responses.

Amaral, I., Moreira Neto, J., Pereira, G., Franco, M., Beletti, M., Kerr, W., Bonetti, A., Ueira-Vieira, C. (2010). Circulating hemocytes from larvae of Melipona scutellaris (Hymenoptera, Apidae, Meliponini): cell types and their role in phagocytosis. Micron, 41(2), 123-129. DOI: 10.1016/j.micron.2009.10.003

Amdam, G., & Omholt, S. (2002). The regulatory anatomyof honeybee lifespan. Journal of Theoretical Biology, 216, 209-228. DOI: 10.1006/jtbi.2002.2545

Amdam, G., & Page, R. (2005). Intergenerational transfers may have decoupled physiological and chronological age in a eusocial insect. Ageing Research Reviews, 4(3), 398-408. DOI: 10.1016/j.arr.2005.03.007

Amdam, G., & Seehuu, S. (2006). Order, disorder, death: Lessons from a superorganism. Advances in Cancer Research, 95, 31-60. DOI: 10.1016/S0065-230X(06)95002-7

Amdam, G., Rueppell, O., Fondrk, M., Page, R., Nelson, C. (2009). The nurse’s load: Early-life exposure to brood-rearing affects behavior and lifespan in honey bees (Apis mellifera). Experimental Gerontology, 44, 467-471. DOI: 10.1016/j.exger.2009.02.013

Antúnez, K., Harriet, J., Gende, L., Maggi, M., Eguaras, M., Zunino, P. (2008). Efficacy of natural propolis extract in the control of American Foulbrood. Veterinary Microbiology, 131, 324-331. DOI: 10.1016/j.vetmic.2008.04.011

Babendreier, D., Kalberer, N., Romeis, J., Fluri, P., Mulligan, E., Bigler, F. (2005). Influence of Bt-transgenic pollen, Bt-toxin and protease inhibitor (SBTI) ingestion on development of the hypopharyngeal glands in honeybees. Apidologie, 6(4), 585-594. DOI: 10.1051/apido:2005049

Bankova, V., De Castro, S., & Marcucci, M. (2000). Propolis: recent advances in chemistry and plant origin. Apidologie, 31, 3-15. DOI: 10.1051/apido:2000102

Bastos, E., Simone, M., Macedo, D., Soares, A., Spivak, M. (2008). In vitro study of the antimicrobial activity of Brazilian propolis against Paenibacillus larvae. Journal of Invertebrate Pathology, 97, 273-281. DOI: 10.1016/j.jip.2007.10.007

Bogdanov, S. (2015). Propolis: Composition, Health, Medicine: A Review. Bee Product Science, 1-40.

Burdock, G. (1998). Review of the biological properties and toxicity of bee propolis (Propolis). Food and Chemical Toxicology, 36(4), 347-363. DOI: 10.1016/S0278-6915(97)00145-2

Cremer, S., & Sixt, M. (2009). Analogies in the evolution of individual and social immunity. Philosophical Transactions of the Royal Society B, 364, 129-142. DOI: 10.1098/rstb.2008.0166

Damiani, N., Fernández, N., Maldonado, L., Álvarez, A., Eguaras, M., Marcangeli, J. (2010). Bioactivity of propolis from different geographical origins on Varroa destructor (Acari: Varroidae). Parasitology Research, 107(1), 31-37. DOI: 10.1007/s00436-010-1829-7

de Moraes, R., & Bowen, I. (2000). Modes of cell death in the hypopharyngeal gland of the honey bee (Apis mellifera L). Cell Biology International, 24(10), 737-743. DOI: 10.1006/cbir.2000.0534

Deseyn, J., & Billen, J. (2005). Age-dependent morphology and ultrastructure of the hypopharyngeal gland of Apis mellifera workers (Hymenoptera, Apidae). Apidologie 36(1), 49-57. DOI: 10.1051/apido: 2004068

Drescher, W., & Schneider, P. (1987). The effect of the Varroa mite upon the fat body of worker bees and their tolerance of pesticides. In Africanized honey bees and bee mites. (pp. 452-456).England: Ellis Horwood ltd. Chichester.

Ebert, T., Kevan, P., Bishop, B., Kevan, S., Downer, R. (2007). Oral toxicity of essential oils and organic acids fed to honey bees (Apis mellifera). Journal of Apicultural Research and Bee World, 46(4), 220-224. DOI: 10.3896/IBRA.

Erler, S., & Moritz, R. (2016). Pharmacophagy and pharmacophory: mechanisms of self-medication and disease prevention in the honeybee colony (Apis mellifera). Apidologie, 47(3), 389-411. DOI: 10.1007/s13592-015-0400-z

Fluri, P., & Bogdanov, S. (1987). Age dependence of fat body protein in summer and winter bees (Apis mellifera). In Chemistry and biology of social insects. (pp. 170-171). Munchen: Verlag J. Peperny.

Fluri, P., Lüscher, M., Wille, H., & Gerig, L. (1982). Changes in weight of the pharyngeal gland and haemolymph titres of juvenile hormone and vitellogenin in worker honeybees. Journal of Insect Physiology, 28(1), 61-68. DOI: 10.1016/0022-1910(82)90023-3

Gillespie, J., Kanost, M., & Trenczek, T. (1997). Biological mediators of insect immunity. Annual Review of Entomology, 42, 611-43. DOI: 10.1146/annurev.ento.42.1.611

Gupta, P., & Chandel, R. (1995). Effects of Diflubenzuron and Penfluron on workers of Apis cerana-indica F. and Apis mellifera L. Apidologie, 26, 3-10. DOI: 10.1051/apido:19950101

Hrassnigg, N., & Crailsheim, K. (1998). Adaptation of hypopharyngeal gland development to the brood status of honeybee (Apis mellifera L.) colonies. Journal of Insect Physiology, 44(10), 929-939. DOI: 10.1016/S0022-1910(98)00058-4

James, R., & Xu, J. (2012). Mechanisms by which pesticides affect insect immunity. Journal of Invertebrate Pathology, 109(2), 175-82. DOI: 10.1016/j.jip.2011.12.005

Johnson, R., Mao, W., Pollock, H., Niu, G., Schuler, M., Berenbaum, M. (2012). Ecologically appropriate xenobiotics induce cytochrome P450s in Apis mellifera. PLoS One, 7(2), e31051. DOI: 10.1371/journal.pone.0031051

Jones, J. (1962). Current concepts concerning insect hemocytes. Integrative and Comparative Biology, 2(2), 209-246. DOI: 10.1093/icb/2.2.209

Keeley, L. (1985). Biochemistry and physiology of the insect fat body. In Comprehensive insect physiology, biochemistry and pharmacology. (pp. 211-228). New York: Pergamon.

Knecht, D., & Kaatz, H. (1990). Patterns of larval food production by hypopharyngeal glands in adult worker honey bees. Apidologie, 21, 457-467. DOI: 10.1051/apido:19900507

König, B. (1988). The honeybee as pharmacophorus insect. Entomologia Generalis, 14(2), 145-148. DOI: 10.1127/entom.gen/14/1988/145

Lavine M., & Strand, M. (2002). Insect hemocytes and their role in immunity. Insect Biochemistry and Molecular Biology, 32(10), 1295-1309. DOI: 10.1016/S0965-1748(02)00092-9

Mao, W., Schuler, M., & Berenbaum, M. (2013). Honey constituents up-regulate detoxification and immunity genes in the western honey bee Apis mellifera. In Proceedings of the National Academy of Sciences of the United States of America (pp. 8842-8846). USA.

Mao, W., Schuler, M., & Berenbaum, M. (2015). A dietary phytochemical alters caste-associated gene expression in honey bees. Science Advances, 1(7), e1500795. DOI: 10.1126/sciadv.1500795

Marcucci, M. (1995). Propolis: chemical composition, biological properties and therapeutic activity. Apidologie, 26(2), 83-99. DOI: 10.1051/apido:19950202

Marmaras, V., & Lampropoulou, M. (2009). Regulatorsand signalling in insect haemocyte immunity. Cell Signal, 21(2), 186-195. DOI: 10.1016/j.cellsig.2008.08.014

Maurizio, V. (1954). Pollenernährung und Lebensvorgänge bei der Honigbiene (Apis mellifica L.). Landwirtschaftliches Jahrbuch der Schweiz, 68(2), 115-182.

McMullan, J., & Brown, M. (2006). The influence of small-cell brood combs on the morphometry of honeybees (Apis mellifera). Apidologie, 37(6), 665-672. DOI: 10.1051/apido:2006041

Mead, G., Ratcliffe, N., & Renwrantz, L. (1986). The separation of insect haemocyte types on Percoll gradients; methodology and problems. Journal of Insect Physiology, 32(2), 167-177. DOI: 10.1016/0022-1910(86)90137-X

Mihai, C., Mărghitaş, L., Dezmirean, D., Chirilă, F., Moritz, R., Schlüns, H. (2012). Interactions among flavonoids of propolis affect antibacterial activity against the honeybee pathogen Paenibacillus larvae. Journal of Invertebrate Pathology, 110(1), 68-72. DOI: 10.1016/j.jip.2012.02.009

Simone, M., Evans, J., & Spivak M. (2009). Resin collection and social immunity in honey bees. Evolution, 63(11), 3016-3022. DOI: 10.1111/j.1558-5646.2009.00772.x

Simone-Finstrom, M., & Spivak, M. (2010). Propolis and bee health: the natural history and significance of resin use by honey bees. Apidologie, 41(3), 295-311. DOI: 10.1051/apido/2010016

Szymaś, B., & Jędruszuk, A. (2003). The influence of different diets on haemocytes of adult worker honey bees, Apis mellifera. Apidologie, 34(2), 97-102. DOI: 10.1051/apido:2003012

Wilson, M., Brinkman, D., Spivak, M., Gardner, G., Cohen, J. (2015). Regional variation in composition and antimicrobial activity of US propolis against Paenibacillus larvae and Ascosphaera apis. Journal of Invertebrate Pathology, 124, 44-50. DOI: 10.1016/j.jip.2014.10.005

Wilson-Rich, N., Dres, S., & Starks, P. (2008). The ontogeny of immunity: Development of innate immune strength in the honey bee (Apis mellifera). Journal of Insect Physiology, 54(10-11), 1392-1399. DOI: 10.1016/j.jinsphys.2008.07.016

Wilson-Rich, N., Spivak, M., Fefferman, N., & Starks, P. (2009). Genetic, individual, and group facilitation of disease resistance in insect societies. Annual Review of Entomology, 54, 405-423. DOI: 10.1146/annurev.ento.53.103106.093301

Journal of Apicultural Science

The Journal of Research Institute of Horticulture and Apicultural Research Association

Journal Information

IMPACT FACTOR 2017: 0.75
5-year IMPACT FACTOR: 1.007

CiteScore 2017: 0.92

SCImago Journal Rank (SJR) 2017: 0.345
Source Normalized Impact per Paper (SNIP) 2017: 0.461

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 378 352 17
PDF Downloads 207 198 13