Proteomic Analysis of Pollen and Blossom Honey from Rape Seed Brassica Napus L.

Open access


In the study, honey from oilseed rape Brassica napus L., and both hand-collected (winter rape Visby and Cult) and bee-collected pollen of oilseed rape were analyzed for their proteome content, in order to see if any plant proteins were present to allow the proteo-typing of the oilseed rape honey. Proteins were fractionated by two-dimensional gel electrophoresis (2DE), stained by Coomassie blue and then analyzed by mass spectrometry. All identified proteins were divided into few groups due to their biological function. In 2DE gels with separated proteins from blossom honey, only bee (Apis mellifera) main proteins (Major royal jelly protein 1-5 and Glucosidase) were found. So we analyzed all proteins using gel-free based analysis with the SYNAPT G2 high definition mass spectrometry. We identified proteins that were present in both oilseed rape pollen and honey (Bna, Polygalacturonase, Non-specific lipid-transfer protein, GAPDH and others). We believe that these proteins are important for the nutritional value of plant pollen-enriched honey and further research is required on honey and honeybee pollen protein.

Al-Mamary, M., Al-Meeri, A., & Al-Habori, M. (2002). Antioxidant activities and total phenolics of different types of honey. Nutrition Research, 22(9), 1041-1047. DOI: 10.1016/S0271-5317(02)00406-2

Babizhayev, M.A., Vishnyakova, K.S., & Yegorov, Y.E. (2014). Oxidative damage impact on aging and age-related diseases: drug targeting of telomere attrition and dynamic telomerase activity flirting with imidazole-containing dipeptides. Recent Patents on Drug Delivery & Formulation, 8(3), 163-192. DOI: 10.2174/1872211308666140602125505

Bhattacharya, D., Klaudiny, J., Schmitzová, J., Simúth, J. (1999). The family of major royal jelly proteins and its evolution. The Journal of Molecular Evolution, 49(2), 290-297. DOI: 10.1242/bio.20147211

Bookstein, F.L. (1989). Principal warps: thin plate splines and the decomposition of deformations. IEEE Transactions on Pattern Analysis Machine Intelligence, 11(6), 567-585. DOI: 10.1109/34.24792

Brudzynski, K., & Kim, L. (2011). Storage-induced chemical changes in active components of honey de-regulate its antibacterial activity. Food Chemistry, 126(3), 1155-1163. DOI:10.1016/j.foodchem.2010.11.151

Cai, T., Wagenlehner, F.M.E., Luciani, L.G., Tiscione, D., Malossini, G., Verze, P., Mirone, V., Bartoletti, R. (2014). Pollen extract in association with vitamins provides early pain relief in patients affected by chronic prostatitis/chronic pelvic pain sindrome. Experimental and Therapeutic Medicine, 8, 1032-1038. DOI: 10.3892/etm.2014.1861

Chandler J.W. (2016). Auxin response factors. Plant Cell Environment, 39(5), 1014-1028. DOI: 10.1111/pce.12662

Chardin, H., Mayer, C., Sénéchal, H., Tepfer, M., Desvaux, F.X., Peltre, G. (2001). Characterization of high-molecular-mass allergens in oilseed rape pollen. International Archives of Allergy and Immunology, 125(2), 128-134. DOI:10.1159/000053806

Dowsey, A.W., English, J.A., Lisacek, F., Morris, J.S., Yang, G.Z., Dunn, M.J. (2010). Image analysis tools and emerging algorithms for expression proteomics. Proteomics, 10, 4226-4257. DOI: 10.1002/pmic.200900635

Erejuwa, O.O., Sulaiman, S.A., & Wahab, M.S. (2012). Honey: a novel antioxidant. Molecules, 17(4), 4400-4423. DOI: 10.3390/molecules17044400

Erlund, I. (2004). Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutrition Research, 24(10), 851-874. DOI:

Ferreira, I., Aires, E., Barreira, J.C.M., Estevinho, L.M. (2009). Antioxidant activity of Portuguese honey samples: different contributions of the entire honey and phenolic extract. Food Chemistry, 114(4), 1438-1443. DOI: 10.1016/j.foodchem.2008.11.028

Focke, M., Hemmer, W., Valenta, R., Götz, M., Jarisch, R. (2003). Identification of oilseed rape (Brassica napus) pollen profilin as a crossreactive allergen. International Archives of Allergy and Immunology, 132(2), 116-123. DOI: 10.1159/000073712

Girolamo, F., D’Amato, A., & Righetti, P.G. (2012). Assessment of the floral origin of honey via proteomic tools. Journal of Proteomics, 75(12), 3688-3693. DOI: 10.1016/j.jprot.2012.04.029

Gracham, J.M. (1992). The Hive and the Honey Bee. Dadant & Sons

Gulden, R.H., Warwick, S.I., & Thomas, A.G. (2008). The biology of Canadian weeds. 137. Brassica napus L. and B. rapa L Can. Journal of Plant Science, 88, 951-996. DOI: 10.4141/CJPS07203

Hong, J.K., Kim, J.A., Kim, J.S., Lee, S.I., Koo, B.S., Lee, Y.H. (2012). Overexpression of Brassica rapa SHI-RELATED SEQUENCE genes suppresses growth and development in Arabidopsis thaliana. Biotechmology Letters, 34, 1561-1569. DOI: 10.1007/s10529-012-0929-0

Islam, R., Polash, A.H., Sakib, M.S., Saha, Ch., Rahman, A. (2013). Computational identification of Brassica napus pollen specific protein Bnm1 as an allergen. International Journal on Bioinformatics & Biosciences, 3(2), 43-55. DOI: 10.5121/ijbb.2013.3205

Jiang, T., Sun, Q., & Chen, S. (2016). Oxidative stress: A major pathogenesis and potential therapeutic target of antioxidative agents in Parkinson’s disease and Alzheimer’s disease. Progress in Neurobiology, 147, 1-19. DOI: 10.1016/j.pneurobio.2016.07.005

Kayum, A., Park, J., Ahmed, N.U., Jung, H.J., Saha, G., Kang, J.K., Nou, I.S. (2015). Characterization and stress‑induced expression analysis of Alfin‑like transcription factors in Brassica rapa. Molecular Genetics and Genomics, 290, 1299-1311. DOI: 10.1007/s00438-015-0993-y

Nasir, N.M., Halim, A.S., Singh, K.B., Dorai, A.A., Haneef, M.M. (2010). Antibacterial properties of tualang honey and its effect in burn wound management: a comparative study. BMC Complementary and Alternative Medicine, 10, 31. DOI: 10.1155/2013/313798

Poikonen, S., Kotovuori, A., Kalkkinen, N., Vaali, K., Reunala, T., Turjanmaa, K., Palosuo, T. (2006). Napins, 2S albumins, are major allergens in oilseed rape and turnip rape. Journal of allergy and clinical immunology, 117(2), 426-432. DOI: 10.1016/j.jaci.2005.10.004

Serackis, A., & Navakauskas, D. (2010). Treatment of over-saturated protein spots in two-dimensional electrophoresis gel images. Informatica, 21(3), 409-424 WOS:000283389700008

Sheoran, I.S., Ross, A.R., Olson, D.J., Sawhney, V.K. (2007). Proteomic analysis of tomato (Lycopersicon esculentum) pollen. Journal of Experimental Botany, 58, 3525-3535. DOI: 10.1093/jxb/erm199

Shevchenko, A., Wilm, M., Vorm, O., Mann, M. (1996). Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Analytical Chemistry, 68, 850-858. DOI: 10.1021/ac950914h

da Silva, P.M., Gauche, C., Gonzaga, L.V., Costa, A.C., Fett, R. (2016). Honey: Chemical composition, stability and authenticity. Food Chemistry, 196, 309-323. DOI: 10.1016/j.foodchem.2015.09.051

Tonks, A.J., Cooper, R.A., Jones, K.P., Blair, S., Parton, J., Tonks, A. (2003). Honey stimulates inflammatory cytokine production from monocytes. Cytokine, 21(5), 242-247. DOI: 10.1016/S1043-4666(03)00092-9

Treigytė, G., Zaikova, I., Matuzevičius, D., Čeksterytė, V., Dabkevičienė, G., Kurtinaitienė, B., Navakauskienė, R. (2014). Comparative proteomic analysis of pollen of Trifolium pratense, T. alexandrinum and T. repens. Zemdirbyste-Agriculture, 101(4), 453−460 WOS:000348823900015

Valledor, L., & Jorrín, J. (2011). Back to the basics: maximizing the information obtained by quantitative two dimensional gel electrophoresis analyses by an appropriate experimental design and statistical analyses. Journal of proteomics, 74(1), 1-18. DOI: 10.1016/j.jprot.2010.07.007

Wagenlehner, F.M., Schneider, H., Ludwig, M., Schnitker, J., Brähler, E., Weidner, W. (2009). A pollen extract (Cernilton) in patients with inflammatory chronic prostatitis-chronic pelvic pain syndrome: a multicentre, randomised, prospective, double-blind, placebo-controlled phase 3 study. European Urology, 56(3), 544-551. DOI: 10.1016/j.eururo.2009.05.046

Wisniewski, J.R., Zougman, A., Nagaraj, N., Mann, M. (2009). Universal sample preparationmethod for proteome analysis. Nature Methods, 6, 359-362. DOI:10.1038/nmeth.1322

Journal of Apicultural Science

The Journal of Research Institute of Horticulture and Apicultural Research Association

Journal Information

IMPACT FACTOR 2017: 0.75
5-year IMPACT FACTOR: 1.007

CiteScore 2018: 0.98

SCImago Journal Rank (SJR) 2018: 0.362
Source Normalized Impact per Paper (SNIP) 2018: 0.645

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 441 345 23
PDF Downloads 219 186 9