Optimal Concentration of Organic Solvents to be Used in the Broth Microdilution Method to Determine the Antimicrobial Activity of Natural Products Against Paenibacillus Larvae

Open access


American Foulbrood (AFB) is a bacterial disease, caused by Paenibacillus larvae, that affects honeybees (Apis mellifera). Alternative strategies to control AFB are based on the treatment of the beehives with antimicrobial natural substances such as extracts, essential oils and/or pure compounds from plants, honey by-products, bacteria and moulds. The broth microdilution method is currently one of the most widely used methods to determine the minimum inhibitory concentration (MIC) of a substance. In this regard, the fact that most natural products, due to their lipophilic nature, must be dissolved in organic solvents or their aqueous mixtures is an issue of major concern because the organic solvent becomes part of the dilution in the incubation medium, and therefore, can interfere with bacterial viability depending on its nature and concentration. A systematic study was carried out to determine by the broth microdilution method the MIC and the maximum non inhibitory concentration (MNIC) against P. larvae of the most common organic solvents used to extract or dissolve natural products, i.e. ethanol, methanol, acetonitrile, n-butanol, dimethylsulfoxide, and acidified hydromethanolic solutions. From the MIC and MNIC for each organic solvent, recommended maximum concentrations in contact with P. larvae were established: DMSO 5% (v/v), acetonitrile 7.5% (v/v), ethanol 7.5% (v/v), methanol 12% (v/v), n-butanol 1% (v/v), and methanol-water-acetic acid (1.25:98.71:0.04, v/v/v).

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Abad-García B. Garmón-Lobato S. Berrueta L. A. Gallo B. Vicente F. (2012). On line characterization of 58 phenolic compounds in Citrus fruit juices from Spanish cultivars by high-performance liquid chromatography with photodiode-array detection coupled to electrospray ionization triple quadrupole mass spectrometry. Talanta 99 213-224. http://doi.org/10.1016/j.talanta.2012.05.042

  • Alippi A. M. (1991). Evaluation of culture media for detecting the starch hydrolysis reaction in pathovars of Xanthomonas campestris. Revista Argentina de Microbiologia 23(1) 41-47.

  • Alippi A. M. (1992). Characterization of Bacillus larvae White the causative agent of American foulbrood of honey-bees. First record of its occurrence in Argentina. Revista Argentina de Microbiologia 24(2) 67-72.

  • Alippi A. M. (1996). Antimicrobial activity of some essential oils against Paenibacillus larvae causal agent of AFB. Journal of Herbs Spices and Medicinal Plants 4(2) 9-15.

  • Alonso-Salces R. M. Guillou C. & Berrueta L. A. (2009). Liquid chromatography coupled with ultraviolet absorbance detection electrospray ionization collision-induced dissociation and tandem mass spectrometry on a triple quadrupole for the on-line characterization of polyphenols and methylxanthines in green coffee beans. Rapid Communications in Mass Spectrometry 23(3) 363-383. http://doi.org/10.1002/rcm.3884

  • Allegrini J. Simeon de Buochberg M. Maillois H. & Boillot A. (1973). Emulsions d’huiles essentielles fabrication et applications en microbiologic. Travaux de la Société de Pharmacie de Montpellier 33 73-86.

  • Antúnez K. Harriet J. Gende L. Maggi M. Eguaras M. Zunino P. (2008). Efficacy of natural propolis extract in the control of American Foulbrood. Veterinary Microbiology 131(3-4) 324-331.

  • Bachanová K. Klaudiny J. Kopernický J. & Šimúth J. (2002). Identification of honeybee peptide active against Paenibacillus larvae larvae through bacterial growth-inhibition assay on polyacrylamide gel. Apidologie 33(3) 259-269.

  • Biesaga M. & Pyrzyńska K. (2013). Stability of bioactive polyphenols from honey during different extraction methods. Food Chemistry 136(1) 46-54.

  • Bíliková K. Mirgorodskaya E. Bukovská G. Gobom J. Lehrach H. Šimúth J. (2009). Towards functional proteomics of minority component of honeybee royal jelly: The effect of post-translational modifications on the antimicrobial activity of apalbumin2. Proteomics 9(8) 2131-2138.

  • Bíliková K. Popova M. Trusheva B. & Bankova V. (2013). New anti-Paenibacillus larvae substances purified from propolis. Apidologie 44(3) 278-285.

  • Boligon A. A. Brum T. F. D. Zadra M. Piana M. Alves C. F. D. S. Fausto V. P. ... Athayde M. L. (2013). Antimicrobial activity of Scutia buxifolia against the honeybee pathogen Paenibacillus larvae. Journal of Invertebrate Pathology 112(2) 105-107.

  • CLSI. (2009a). Methods for dilution antimicrobial susceptibility testing for bacteria that grew aerobically. Approved Standard M7-A10. Wayne Pennsylvania: Clinical and Laboratory Standards Institute.

  • CLSI. (2009b). Performance standards for antimicro bial disk susceptibility tests. Approved standard M2-A10. Wayne Pennsylvania: Clinical and Laboratory Standards Institute.

  • Chun A. Y. Yunxiao L. Ashok S. Seol E. Park S. (2014). Elucidation of toxicity of organic acids inhibiting growth of Escherichia coli W. Biotechnology and Bioprocess Engineering 19(5) 858-865. http://doi.org/10.1007/s12257-014-0420-y

  • Damiani N. Fernández N. Porrini M. Gende L. B. Álvarez E. Buffa ... Eguaras M. J. (2014). Laurel leaf extracts for honeybee pest and disease management: Antimicrobial microsporicidal and acaricidal activity. Parasitology Research 113(2) 701-709.

  • De Graaf D. C. Alippi A. M. Antúnez K. Aronstein K. A. Budge G. De Koker D. ... Genersch E. (2013). Standard methods for American foulbrood research. Journal of Apicultural Research 52(1). http://dx.doi.org/10.3896/IBRA.

  • Dickert H. Machka K. & Braveny I. (1981). The uses and limitations of disc diffusion in the antibiotic sensitivity testing of bacteria. Infection 9(1) 18-24.

  • Dingman D. & Stahly D. P. (1983). Medium promoting sporulation of Bacillus larvae and metabolism of medium components. Applied and Environmental Microbiology 46(4) 860-869.

  • Eguaras M. J. Fuselli S. R. Gende L. B. Fritz R. Ruffinengo S. R. Clemente G. ... Ponzi M. I. (2005). An in vitro evaluation of Tagetes minuta essential oil for the control of the honeybee pathogens Paenibacillus larvae and Ascosphaera apis and the parasitic mite Varroa destructor. Journal of Essential Oil Research 17(3) 336-340.

  • Feldlaufer M. F. Knox D. A. Lusby W. R. & Shimanuki H. (1993). Antimicrobial activity of fatty acids against Bacillus larvae the causative agent of American foulbrood disease. Apidologie 24(2) 95-99.

  • Flesar J. Havlik J. Kloucek P. Rada V. Titera D. Bednar M. Stropnicky M. & Kokoska L. (2010). In vitro growth-inhibitory effect of plant-derived extracts and compounds against Paenibacillus larvae and their acute oral toxicity to adult honey bees. Veterinary Microbiology 145(1-2) 129-133.

  • Fuselli S. R. García De La Rosa S. B. Gende L. B. Eguaras M. J. Fritz R. (2006a). Antimicrobial activity of some Argentinian wild plant essential oils against Paenibacillus larvae larvae causal agent of American foulbrood (AFB). Journal of Apicultural Research 45(1) 2-7.

  • Fuselli S. R. García De La Rosa S. B. Gende L. B. Eguaras M. J. Fritz R. (2006b). Inhibition of Paenibacillus larvae employing a mixture of essential oils and thymol. Revista Argentina de Microbiologia 38(2) 89-92.

  • Gallardo G. L. Peña N. I. Chacana P. Terzolo H. R. Cabrera G. M. (2004). L-Tenuazonic acid a new inhibitor of Paenibacillus larvae. World Journal of Microbiology and Biotechnology 20(6) 609-612. http://doi.org/10.1023/B:WIBI.0000043175.23621.8c

  • Genersch E. Forsgren E. Pentikäinen J. Ashiralieva A. Rauch S. Kilwinski J. Fries I. (2006). Reclassification of Paenibacillus larvae subsp. pulvifaciens and Paenibacillus larvae subsp. larvae as Paenibacillus larvae without subspecies differentiation. International Journal of Systematic and Evolutionary Microbiology 56(3) 501-511. http://doi.org/10.1099/ijs.0.63928-0

  • Hernández-López J. Crockett S. Kunert O. Hammer E. Schuehly W. Bauer R. Crailsheim K. Riessberger-Gallé U. (2014). In vitro growth inhibition by Hypericum extracts and isolated pure compounds of Paenibacillus larvae a lethal disease affecting honeybees worldwide. Chemistry and Biodiversity 11(5) 695-708.

  • Hornitzky M. A. Z. (2003). Fatty acids-an alternative control strategy for honeybee diseases: (Report 0642585962). Kingston Australia: Rural Industries Research and Development Corporation Autralia Government.

  • Lokvam J. Braddock J. F. Reichardt P. B. & Clausen T. P. (2000). Two polyisoprenylated benzophenones from the trunk latex of Clusia grandiflora (Clusiaceae). Phytochemistry 55(1) 29-34.

  • Mihai C. M. Mârghitaş L. A. Dezmirean D. S. Chirilâ F. Moritz R. F. A. Schlüns H. (2012). Interactions among flavonoids of propolis affect antibacterial activity against the honeybee pathogen Paenibacillus larvae. Journal of Invertebrate Pathology 110(1) 68-72.

  • Mutinelli F. (2003). European legislation governing the authorization of veterinary medicinal products with particular reference to the use of drugs for the control of honey bee diseases. Apiacta 38 156-168.

  • Nordström S. & Fries I. (1995). A comparison of media and cultural conditions for identification of Bacillus larvae in honey. Journal of Apicultural Research 34(2) 97-103.

  • Pellecuer J. Allegrini J. & Simeon De Buochberg M. (1976). Bactericidal and fungicidal essential oils. Revue de l’Institut Pasteur de Lyon 9(2) 135-159.

  • Ramirez-Ambrosi M. Abad-Garcia B. Viloria-Bernal M. Garmon-Lobato S. Berrueta L. A. Gallo B. (2013). A new ultrahigh performance liquid chromatography with diode array detection coupled to electrospray ionization and quadrupole time-of-flight mass spectrometry analytical strategy for fast analysis and improved characterization of phenolic compounds in apple products. Journal of Chromatography A 1316 78-91. http://doi.org/10.1016/j.chroma.2013.09.075

  • Recio M. C. Rios J. L. & Villar A. (1989). A review of some antimicrobial compounds isolated from medicinal plants reported in the literature 1978-1988. Phytotherapy Research 3(4) 117-125.

  • Reyes M. G. Torres M. J. Maggi M. D. Marioli J. M. Gil R. R. Sosa V. E. Uriburu M. L. Audisio M. C. (2013). In vitro inhibition of Paenibacillus larvae by different extracts and pure compounds from Flourensia spp. Industrial Crops and Products 50 758-763.

  • Ríos J. L. & Recio M. C. (2005). Medicinal plants and antimicrobial activity. Journal of Ethnopharmacology 100(1-2) 80-84. http://doi.org/10.1016/j.jep.2005.04.025

  • Sabaté D. C. Gonzaléz M. J. Porrini M. P. Eguaras M. J. Audisio M. C. Marioli J. M. (2012). Synergistic effect of surfactin from Bacillus subtilis C4 and Achyrocline satureioides extracts on the viability of Paenibacillus larvae. World Journal of Microbiology and Biotechnology 28(4) 1415-1422.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.804
5-year IMPACT FACTOR: 1.007

CiteScore 2018: 0.98

SCImago Journal Rank (SJR) 2018: 0.362
Source Normalized Impact per Paper (SNIP) 2018: 0.645

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 485 279 10
PDF Downloads 319 191 8