Physico-chemical characterization and antibacterial activity of different types of honey tested on strains isolated from hospitalized patients

Open access

Abstract

The first aim of the study was to compare the antibacterial activity of several types of honey of different origins, against some bacterial resistant strains. The strains had been isolated from patients. The second aim was to discover the correlations between the antibacterial character of honey and the physico-chemical properties of the honey. Ten honey samples (polyfloral, linden, acacia, manna, and sunflower) from the centre of Romania were tested to determine their antibacterial properties against the following bacterial species: Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, Salmonella enterica serovar Typhimurium, Bacillus cereus, Bacillus subtilis, and Listeria monocytogenes. Bacterial cultures in nutrient broth and the culture medium Mueller-Hinton agar were used. The susceptibility to antibiotics was performed using the disk diffusion method. All honey samples showed antibacterial activity on the isolated bacterial strains, in particular polyfloral (inhibition zone 13-21 mm in diameter) - because it is the source of several plants, and manna (inhibition zone 13-19.5 mm in diameter), and sunflower (inhibition zone 14-18.5 mm in diameter). Pure honey has a significant antibacterial activity against some bacteria which are resistant to antibiotics. Bacterial strains differed in their sensitivity to honeys. Pseudomonas aeruginosa and Staphylococcus aureus were the most sensitive. The present study revealed that honey antibacterial activity depends on the origin of the honey. We also found that there was a significant correlation between antibacterial activity of honeys and the colour of the honey but not between acidity and pH. The statistical analysis showed that the honey type influences the antibacterial activity (diameter of the bacterial strains inhibition zones).

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Alvarez-Suarez J. M. Tulipani S. Daimy Díaz D. Estevez Y. Romandini S. Giampieri F. Damiani E. Astolfi P. Bompadre S. Battino M. (2010). Antioxidant and antimicrobial capacity of several monofloral Cuban honeys and their correlation with color polyphenol content and other chemical compounds. Food and Chemical Toxicology 48 2490-2499.

  • Anthimidou E. & Mossialos D. (2013). Antibacterial activity of Greek and Cypriot honeys against Staphylococcus aureus and Pseudomonas aeruginosa in comparison to manuka honey. Journal of Medicinal Food 16(1) 42-47.

  • AOAC Official Methods 978.18 (1995). Water activity

  • Assadi-Pooya A. A. Pnjehshahin M. R. & Beheshti S. (2003). The antimycobacterial effect of honey: An in vitro study. Rivista di Biologia 96 491-495.

  • Baker P. Cohen B. Liu J. Larson E. (2015). Incidence and risk factors for community-associated methicillin- resistant Staphylococcus aureus in New York City 2006-2012. Epidemiology and Infection 14 1-4.

  • Bogdanov S. (1997). Nature and origin of the antibacterial substances in honey. Lebensmittel-Wissenschaft und -Technologie 30 748-753.

  • Box G. E. P. Hunter J. S. & Hunter W. G. (2005). Statistics for experimenters: design innovation and discovery. Hoboken: John Wiley & Sons Press. New Jersey. 214 pp

  • Brudzynski K. Abubaker K. & Tony Wang T. (2012). Powerful bacterial killing by buckwheat honeys is concentration-dependent involves complete DNA degradation and requires hydrogen peroxide. Frontiers in Microbiology 3 242. DOI: 10.3389/ fmicb.2012.00242

  • Chini V. Petinaki E. Foka A. Paratiras S. Dimitracopoulos G. Spiliopoulou I. (2006). Spread of Staphylococcus aureus clinical isolates carrying Panton- Valentine leukocidin genes during a 3-year period in Greece. Clinical Microbiology and Infection 12 29-34

  • CLSI (2006) Performance standards for antimicrobial susceptibility testing 16th informational supplement M100-S16. Wayne PA

  • Codex Standard for Honey 12 (1981). Revisions (2001)

  • Condon. R. E. (1993). Curious interaction of bugs and bees. Surgery 113(2): 234-235.

  • Cooper R. A. Molan P. C. & Harding K.G. (1999). Antibacterial activity of honey against strains of Staphylococcus aureus from infected wounds. Journal of the Royal Society of Medicine 92 283-285.

  • Cooper R. A. Molan P. C. & Harding K. G. (2002). The sensitivity to honey of Gram-positive cocci of clinical significance isolated from wounds. Journal of Ap plied Microbiology 93 857-863.

  • Fahim H. Dastil J. I. Ali I. Ahmed S. Nadeem M. (2014). Physico-chemical analysis and antimicrobial potential of Apis dorsata Apis mellifera and Ziziphus jujube honey samples from Pakistan. Asian Pacific Journal of Tropical Biomedicine 4(8) 633-641.

  • Gomes S. Dias L. G. Moreira L. L. Rodrigues P. Estevinho L. (2010). Physicochemical microbiological and antimicrobial properties of commercial honeys from Portugal. Food and Chemical Toxicology 48(2) 544-548.

  • Hamid S. & Saeed M. A. (1991). Bee keeping. Hamdard Medicus 34: 94-95.

  • Herold B. C. Immergluck L. C. Maranan M. C. Lauderdale D. S. Gaskin R. E. Boyle-Vavra S. Leitch C. D. Daum R. S. (1998). Community-acquired methicillinresistant Staphylococcus aureus in children with no identified predisposing risk. Journal of the American Medical Association 279 593-598.

  • Jenkins R. Burton N. & Cooper R. (2011). Effect of manuka honey on the expression of universal stress protein A in meticillin-resistant Staphylococcus aureus. International Journal of Antimicrobial Agents 37 373-376.

  • Kingsley A. (2001). The use of honey in the treatment of infected wounds: case studies. British Journal of Nursing 10(22 suppl) 13-20.

  • Kloos W. E. & Bannerman T. L. (1999). Staphylococcus and Micrococcus. In: Baron E. J. Pfaller M. A. Tenover F. C. Yolken R. H. (Eds.). Manual of clinical microbiology 7th ed. American Society for Microbiology. Washington DC: 116-138.

  • Livermore D. M. (1995). β - Lactamases in laboratory and clinical resistance. Clinical Microbiology Reviews 8 557-584.

  • Mamishi S. Mahmoudi S. Bahador A. Matini H. Movahedi Z. Sadeghi R. H. Pourakbari B. (2015).

  • Emergence of community-acquired methicillin-resistant Staphylococcus aureus in an Iranian referral paediatric hospital. British Journal of Biomedical Science 72(2) 47-51.

  • Martínez-Aguilar G. Avalos-Mishaan A. Hulten K. Hammerman W. Mason E. O. Kaplan S. L. (2004). Community-acquired methicillin-resistant and methicillin- susceptible Staphylococcus aureus musculoskeletal infections in children. Pediatric Infectious Disease Journal 23 701-706.

  • Maryann N. (2000). Honey as medicine has a long history - New Zealand honey is focus of intensive research. Health Facts 25 4-5.

  • Molan P. C. (2002). Re-introducing honey in the management of wounds and ulcers-theory and practice. Ostomy Wound Management 48(11): 28-40.

  • Nzeako B. C. & Hamdi J. (2000). Antimicrobial potential of honey on some microbial isolates. Journal of Applied Bacteriology 2 75-79.

  • Packer J. M Irish J. Herbert B. R. Hill C. Padula M. Blair S. E. Carter D. A. Harry E. J. (2012). Specific non-peroxide antibacterial effect of manuka honey on the Staphylococcus aureus proteome. International Journal of Antimicrobial Agents 40 43-50.

  • Poiată A. (2002). Laboratory tests for the initiation of antibiotic therapy. In: Poiata A. (Ed.). Laboratory methods in pharmaceutical microbiology. Moldova Press. Iaşi: 78-93.

  • Popescu N. & Meica S. (1997). Bee products and their chemical analysis. Diacon CORESI Press. Bucharest. 125 pp.

  • Postmes T. Van den Bogaard A. E. & Hazen M. (1993). Honey from wounds ulcer and skin graft preservation. The Lancet 341(8847) 756-757.

  • Rosenthal V. D. Maki D. G. Mehta A. Alvarez- Moreno C. Leblebicioglu H. Higuera F. Cuellar L. E. Madani N. Mitrev Z. Duenas L. Navoa-Ng J. A. Garcell H. G. Raka L. Hidalgo R. F. Medeiros E. A. Kanj S. S. Abubakar S. Nercelles P. Pratesi R. D. (2008). International Nosocomial Infection Control Consortium report data summary for 2002-2007. American Journal of Infection Control 36 627-637.

  • Rossolini G. M. & Mantengoli E. (2005). Treatment and control of severe infections caused by multiresistant Pseudomonas aeruginosa. Clinical Microbiology and Infection 4 17-32.

  • Russel K. M. Molan P. Wilkins A.L. Holland P.T. (1998). Identification of some antibacterial constituents of New Zeeland manuka honey. Journal of Agricultural and Food Chemistry 38 10-13.

  • Sheikh D. Uz-Zaman S. Baqir Naqvi S. Rafi Sheikh M. Ghulam A. (1995). Studies on the antimicrobial activity of honey. Pakistan Journal of Pharmaceutical Sciences 8 51-62.

  • SR 784-3 (2009). Honey. Part 3: Analysis methods (Romanian Standard)

  • SR 2213-5 (2009). Sweet products. Part 5: Determination of soluble dry matter (Refractometric method). (Romanian Standard)

  • Tajik H. & Jalali F. S. S. (2009). In vitro evaluation of antimicrobial efficacy of natural honey in comparison with sulfonamide derivatives. Journal of Animal and Veterinary Advances 8(1) 23-25.

  • Tan H. T. Rahman R. A. Gan S. H. Halim A. S. Siti A. H. Siti A. S. Kirnpal-Kaur B. S. (2009). BMC Complementary and Alternative Medicine 9 34 DOI:10.1186/1472-6882-9-34

  • Taormina P. J. Niemira B. A. & Bauchat L. R. (2001). Inhibitory activity of honey against food borne pathogens as influenced by the presence of hydrogen peroxide and level of antioxidant power. International Journal of Food Microbiology 69(3) 217-225.

  • Thapaliya D. O’Brien A. M. Wardyn S. E. Smith T. C. (2015). Epidemiology of necrotizing infection caused by Staphylococcus aureus and Streptococcus pyogenes at an Iowa hospital. Journal of Infection and Public Health 8(6) 634-641.

  • Tovey F. I. (1991). Honey and healing. Journal of the Royal Society of Medicine 84(7) 447.

  • Tumin N. Arsyiah N. Halim A. Shahjahan M. Noor Izani N. J. Sattar M. A. Khan A. H. Mohsin S. S. J. (2005). Antibacterial activity of local malaysian honey. International Journal of Pharmacy and Pharmaceutical Sciences 3(2) 1-10.

  • White J. W. & Subers M. H. (1964). Studies of honey inhibine 3. The effect of heat. Journal of Apicultural Research 3 445-450.

Search
Journal information
Impact Factor


IMPACT FACTOR 2018: 0.804
5-year IMPACT FACTOR: 1.007

CiteScore 2018: 0.98

SCImago Journal Rank (SJR) 2018: 0.362
Source Normalized Impact per Paper (SNIP) 2018: 0.645

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 515 312 7
PDF Downloads 279 205 5