Expression of the Prophenoloxidase Gene and Phenoloxidase Activity, During the Development of Apis Mellifera Brood Infected with Varroa Destructor

Open access

Abstract

The pathogenesis of varroasis has not been fully explained despite intensive research. Earlier studies suggested that parasitic infections caused by Varroa destructor mites were accompanied by immunosuppression in the host organism. The objective of this study was to analyse the influence of varroasis on one of the immune pathway in Apis mellifera measured by the expression of the prophenoloxidase (proPO) gene and the enzymatic activity of this gene’s product, phenoloxidase (EC 1.14.18.1). An evaluation was done of five developmental stages of honey bee workers and drones. The relative expression of proPO decreased in infected individuals. The only exceptions were worker prepupae (PP) and drone pupae with brown eyes and dark brown thorax (P5) where propo gene expression was 1.8-fold and 1.5-fold higher, respectively, than in the control. Phenoloxidase (PO) activity was 2.8-fold higher in infected pp workers and 2-fold higher in p5 drones in comparison with uninfected bees. Phenoloxidase activity was reduced in the remaining developmental stages of infected workers and drones. The relative expression of proPO was positively correlated with the relative PO activity in both workers (r = 0.988) and drones (r = 0.996). The results of the study indicate that V. destructor significantly influences the phenoloxidase-dependent immune pathway in honey bees.

Adamo S. A. (2004) Estimating disease resistance in insects: phenoloxidase and lysozyme-like activity and disease resistance in the cricket Gryllus texensis. Journal of Insect Physiology 50(2-3): 209-216. DOI: 10.1016/j. jinsphys.2003.11.011

Adamo S. A., Jensen M., Younger M. (2001) Changes in lifetime immunocompetence in male and female Gryllus texensis (formerly G. integer): trade-offs between immunity and reproduction. Animal Behaviour 62(3): 417-425. DOI: 10.1006/anbe.2001.1786

Aronstein K. A., Saldivar E., Vega R., Westmiller S., Douglas A. E. (2012) How Varroa parasitism affects the immunological and nutritional status of the honey bee, Apis mellifera. Insects 3(3): 601-615. DOI: 10.3390/insects3030601

Ashida M., Yamazaki H. I. (1990) Biochemistry of the phenoloxidase system in insects: with special reference to its activation. In: Ohnishi E., Ishizaki H. (Eds.) Molting and Metamorphosis. Japan Science Society Press. Tokyo: 239-265.

Bradford M. M. (1976) A rapid sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein - dye binding. Analytical Biochemistry 72: 248-254. DOI:10.1016/0003-2697(76)90527-3

Brey P. T., Lee W. J., Yamakawa M., Koizumi Y., Perrot S., Francois M., Ashida M. (1993) Role of the integument in insect immunity: epicuticular abrasion and induction of cecropin synthesis in cuticular epithelial cells. Proceedings of the National Academy of Sciences 90(13): 6275-6279. DOI: 10.1073/pnas.90.13.6275

Cerenius L., Söderhäll K. (2004) The prophenoloxidase- activating system in invertebrates. Immunological Reviews 198(1): 116-26. DOI: 10.1111/j.0105-2896.2004.00116.x

Contreras-Garduno J., Lanz-Mendoza H., Cordoba-Aguilar A. (2007) The expression of a sexually selected trait correlates with different immune defense components and survival in males of the American rubyspot. Journal of Insect Physiology 53:612-621.

Ellis J. D. (2001) The future of Varroa control: Integrating current treatments with the latest advancements. American Bee Journal 141(2): 127-131.

Genersch E. (2010) Honey bee pathology: current threats to honey bees and beekeeping. Applied Microbiology and Biotechnology 87(1): 87-97. DOI: 10.1007/ s00253-010-2573-8

Gregorc A., Evans J. D., Scharf M., Ellis J. D. (2012) Gene expression in honey bee (Apis mellifera) larvae exposed to pesticides and Varroa mites (Varroa destructor ). Journal of Insect Physiology 58(8): 1042-1049. DOI: 10.1016/j. jinsphys.2012.03.015

Gregory P. G., Evans J. D., Rinderer T., de Guzman L. I. (2005) Conditional immune-gene suppression of honeybees parasitized by Varroa mites. Journal of Insect Science 5: 1-5.

Grzywnowicz K., Ciołek A. (Strachecka), Tabor A., Jazek M. (2009) Profiles of body-surface proteolytic system of honey bee queens, workers and drones: Ontogenetic and seasonal changes in proteases and their natural inhibitors. Apidolgie 40(1): 4-19. DOI: 10.1051/apido: 2008057

Jay C. S. (1962) Colour changes in honeybee pupae. Bee World 43: 119-122.

Jay C. S. (1963) The development of honeybees in the their cells. Journal Apiculture Research 2: 117-134.

Khongphinitbunjong K., de Guzman L. I., Tarver M. R., Rinderer T. E., Chen Y., Chantawannakul P. (2015) Differential viral levels and immune gene expression in three stocks of Apis mellifera induced by different numbers of Varroa destructor. Journal of Insect Physiology 72: 28-34. DOI:10.1016/j.jinsphys.2014.11.005

Krupke C. H., Hunt G. J., Eitzer B. D., Andino G., Given K. (2012) Multiple routes of pesticide exposure for honey bees living near agricultural fields. Public Library of Science One 7(1): e29268. DOI: 10.1371/journal. pone.0029268

Kuster R. D., Boncristiani H. F., Rueppell O. (2014) Immunogene and viral transcript dynamics during parasitic Varroa destructor mite infection of developing honey bee (Apis mellifera) pupae. The Journal of Experimental Biology 217: 1710-1718. DOI:10.1242/jeb.097766

Laughton A. M., Siva-Jothy M. T. (2010) A standardised protocol for measuring phenoloxidase and prophenoloxidase in the honey bee, Apis mellifera. Apidologie 42(2): 140-149. DOI: 10.1051/apido/2010046

Laughton A. M., Boots M., Siva-Jothy M. T. (2011) The ontogeny in the honey bee, Apis mallifera L. following an immune challenge. Journal of Insect Physiology 57(7): 1023-1032. DOI:10.1016/j.jinsphys.2011.04.020

Leclerc V., Pelte N., El Chamy L., Martinelli C., Ligoxygakis P., Hoffmann J. A., Reichhart J. M. (2006) Prophenoloxidase activation is not required for survival to microbial infections in Drosophila. European Molecular Biology Organization Reports 7(2): 231-235. DOI: 10.1038/ sj.embor.7400592

Lee G. M., Brown M. J. F., Oldroyd B. P. (2013) Inbred and outbred honey bees (Apis mellifera) have similar innate immune responses. Insectes Sociaux 60(1): 97-102. DOI: 10.1007/s00040-012-0271-5

Michell H. K. (1966) Phenoloxidases and Drosophila development. Journal of Insect Physiology 12(7): 755-765.

DOI: 10.1016/0022-1910(66)90028-X

Osta M. A., Christophides G. K., Vlachou D., Kafatos F. C. (2004) Innate immunity in the malaria vector Anopheles gambiae: comparative and functional genomics. Journal of Experimental Biology 207(Pt 15): 2551-2563. DOI: 10.1242/ jeb.01066

Pfaffl M. W. (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research 29(9): e45. DOI: 10.1093/nar/29.9.e45

Rinderer T. E., Kuznetsov V. N., Danka R. G., Delatte G. T. (1997) An importation of potentially varroa-resistant honey bees from far-eastern Russia. American Bee Journal 137: 787-789.

Roberts K. E., Hughes W. O. H. (2014) Immunosenescence and resistance to parasite infection in the honey bee, Apis mellifera. Journal of Invertebrate Pathology 121: 1-6. DOI: 10.1016/j.jip.2014.06.004

Rodriguez-Andres J., Rani S., Varjak M., Chase-Topping M. E., Beck M. H., Ferguson M. C., Schnettler E., Fragkoudis R., Barry G., Merits A. Fazakerley J. K., Strand M. R., Kohl A. (2012) Phenoloxidase activity acts as a mosquito innate immune response against infection with Semliki Forest virus. Public Library of Science Pathogens 8(11): e1002977. DOI: 10.1371/journal.ppat.1002977

Rosenkranz P., Aumeier P., Ziegelmann B. (2010) Biology and control of Varroa destructor. Journal of Invertebrate Pathology 103(1): 96-119. DOI: 10.1016/j. jip.2009.07.016

Statistica ver. 8 (2007) Statsoft Inc. Tulsa, Oklahoma, USA.

Strachecka A., Gryzińska M., Krauze M. (2010) The influence of environmental pollution on the protective proteolytic barrier of the honey bee Apis mellifera’s body surface. Polish Journal of Environmental Studies 19(4): 855-859.

Strachecka A., Borsuk G., Paleolog J., Olszewski K., Bajda M., Chobotow J. (2014) Body-surface compounds in Buckfast and Caucasian honey bee Wolkers (Apis mellifera). Journal of Apicultural Science 50: 5-15. DOI: 10.2478/ JAS-2014-0001

Sugumaran M. (2002) Comparative biochemistry of eumelanogenesis and the protective roles of phenoloxidase and melanin in insects. Pigment Cell Research 15(1): 2-9. DOI: 10.1034/j.1600-0749.2002.00056.x

Wilson-Rich N., Dres S. T., Starks P. T. (2008) The ontogeny of immunity: development of innate immune strength in the honey bee (Apis mellifera). Journal of Insect Physiology 54(10-11): 1392-1399. DOI: 10.1016/j. jinsphys.2008.07.016

vanEngelsdorp D., Evans J. D., Donovall L., Mullin C., Frazier M., Frazier J., Tarpy D. R., Hayes J., Pettis J. S. (2009) “Entombed pollen’’: a new condition in honey bee colonies associated with increased risk of colony mortality. Journal of Invertebrate Pathology 101(2): 147-149. DOI:10.1016/j.jip.2009.03.008

Yang X., Cox-Foster D. L. (2005) Impact of an ectoparasite on the immunity and pathology of an invertebrate: evidence for host immunosuppression and viral amplification. Procedding of the National Academy of Sciences 102(21): 7470-7475. DOI: 10.1073/pnas.0501860102

Zhang Y., Liu X., Zhang W., Han R. (2010) Differential gene expression of the honey bees Apis mellifera and A. cerana induced by Varroa destructor infection. Journal of Insect Physiology 56(9): 1207-18. DOI: 10.1016/j.jinsphys.2010.03.019

Zufelato M. S., Lourenço A. P., Simões Z. L., Jorge J. A., Bitondi M. M. (2004) Phenoloxidase activity in Apis mellifera honey bee pupae, and ecdysteroid-dependent expression of the prophenoloxidase mRNA. Insect Biochemistry and Molecular Biology 34(12): 1257-1268. DOI: 10.1016/j.ibmb.2004.08.005

Journal of Apicultural Science

The Journal of Research Institute of Horticulture and Apicultural Research Association

Journal Information


IMPACT FACTOR 2017: 0.75
5-year IMPACT FACTOR: 1.007

CiteScore 2017: 0.92

SCImago Journal Rank (SJR) 2017: 0.345
Source Normalized Impact per Paper (SNIP) 2017: 0.461

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 134 134 28
PDF Downloads 69 69 24