Some new Ostrowski’s inequalities for functions whose n-th derivatives are h-convex are established.
Ben-Israel A. and Mond B. 1986. What is invexity? J. Austral. Math. Soc. Ser. B 28 1 1–9.
Dragomir S. S. 2001. On the Hadamard’s inequality for convex functions on the co-ordinates in a rectangle from the plane. Taiwanese J. Math. 5 4 775–788.
Hanson M. A. 1981. On sufficiency of the Kuhn-Tucker conditions. J. Math. Anal. Appl. 80 2 545–550.
Kilbas A. A. Srivastava H. M. and Trujillo J. J. 2006. Theory and applications of fractional differential equations. North-Holland Mathematics Studies vol. 204. Elsevier Science B.V. Amsterdam.
Latif M. A. and Dragomir S. S. 2013. Some Hermite-Hadamard type inequalities for functions whose partial derivatives in absolute value are preinvex on the co-ordinates. Facta Univ. Ser. Math. Inform. 28 3 257–270.
Matł Oka M. 2013. On some Hadamard-type inequalities for (h1h2)-preinvex functions on the co-ordinates. J. Inequal. Appl. 2013:227 12.
Meftah B. 2019. Fractional hermite-hadamard type integral inequalities for functions whose modulus of derivatives are co-ordinated log-preinvex. Punjab Univ. J. Math. (Lahore) 51 2.
Noor M. A. 1994. Variational-like inequalities. Optimization 30 4 323–330.
Noor M. A. 2005. Invex equilibrium problems. J. Math. Anal. Appl. 302 2 463–475.
Özdemir M. E. Akdemir A. O. and Yi Ldiz C. 2012. On co-ordinated quasi-convex functions. Czechoslovak Math. J. 62(137) 4 889–900.
Özdemir M. E. Yi Ldiz C. and Akdemir A. O. 2012. On some new Hadamard-type inequalities for co-ordinated quasi-convex functions. Hacet. J. Math. Stat. 41 5 697–707.
Pečarić J. E. Proschan F. and Tong Y. L. 1992. Convex functions partial orderings and statistical applications. Mathematics in Science and Engineering vol. 187. Academic Press Inc. Boston MA.
Pini R. 1991. Invexity and generalized convexity. Optimization 22 4 513–525.
Sari Kaya M. Z. 2014. On the Hermite-Hadamard-type inequalities for co-ordinated convex function via fractional integrals. Integral Transforms Spec. Funct. 25 2 134–147.
Weir T. and Mond B. 1988. Pre-invex functions in multiple objective optimization. J. Math. Anal. Appl. 136 1 29–38.
Yang X. M. and Li D. 2001. On properties of preinvex functions. J. Math. Anal. Appl. 256 1 229–241.