Fractional Hermite-Hadamard type inequalities for co-ordinated prequasiinvex functions

Open access

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Ben-Israel A. and Mond B. 1986. What is invexity? J. Austral. Math. Soc. Ser. B 28 1 1–9.

  • Dragomir S. S. 2001. On the Hadamard’s inequality for convex functions on the co-ordinates in a rectangle from the plane. Taiwanese J. Math. 5 4 775–788.

  • Hanson M. A. 1981. On sufficiency of the Kuhn-Tucker conditions. J. Math. Anal. Appl. 80 2 545–550.

  • Kilbas A. A. Srivastava H. M. and Trujillo J. J. 2006. Theory and applications of fractional differential equations. North-Holland Mathematics Studies vol. 204. Elsevier Science B.V. Amsterdam.

  • Latif M. A. and Dragomir S. S. 2013. Some Hermite-Hadamard type inequalities for functions whose partial derivatives in absolute value are preinvex on the co-ordinates. Facta Univ. Ser. Math. Inform. 28 3 257–270.

  • Matł Oka M. 2013. On some Hadamard-type inequalities for (h1h2)-preinvex functions on the co-ordinates. J. Inequal. Appl. 2013:227 12.

  • Meftah B. 2019. Fractional hermite-hadamard type integral inequalities for functions whose modulus of derivatives are co-ordinated log-preinvex. Punjab Univ. J. Math. (Lahore) 51 2.

  • Noor M. A. 1994. Variational-like inequalities. Optimization 30 4 323–330.

  • Noor M. A. 2005. Invex equilibrium problems. J. Math. Anal. Appl. 302 2 463–475.

  • Özdemir M. E. Akdemir A. O. and Yi Ldiz C. 2012. On co-ordinated quasi-convex functions. Czechoslovak Math. J. 62(137) 4 889–900.

  • Özdemir M. E. Yi Ldiz C. and Akdemir A. O. 2012. On some new Hadamard-type inequalities for co-ordinated quasi-convex functions. Hacet. J. Math. Stat. 41 5 697–707.

  • Pečarić J. E. Proschan F. and Tong Y. L. 1992. Convex functions partial orderings and statistical applications. Mathematics in Science and Engineering vol. 187. Academic Press Inc. Boston MA.

  • Pini R. 1991. Invexity and generalized convexity. Optimization 22 4 513–525.

  • Sari Kaya M. Z. 2014. On the Hermite-Hadamard-type inequalities for co-ordinated convex function via fractional integrals. Integral Transforms Spec. Funct. 25 2 134–147.

  • Weir T. and Mond B. 1988. Pre-invex functions in multiple objective optimization. J. Math. Anal. Appl. 136 1 29–38.

  • Yang X. M. and Li D. 2001. On properties of preinvex functions. J. Math. Anal. Appl. 256 1 229–241.

Search
Journal information
Impact Factor
Mathematical Citation Quotient (MCQ) 2017: 0.06

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 78 78 16
PDF Downloads 106 106 24