Estimating the parameters of lifetime distributions under progressively Type-II censoring from fuzzy data

Open access

Abstract

The problem of estimating lifetime distribution parameters under progressively Type-II censoring originated in the context of reliability. But traditionally it is assumed that the available data from this censoring scheme are performed in exact numbers. However, some collected lifetime data might be imprecise and are represented in the form of fuzzy numbers. Thus, it is necessary to generalize classical statistical estimation methods for real numbers to fuzzy numbers. This paper deals with the estimation of lifetime distribution parameters under progressively Type-II censoring scheme when the lifetime observations are reported by means of fuzzy numbers. A new method is proposed to determine the maximum likelihood estimates of the parameters of interest. The methodology is illustrated with two popular models in lifetime analysis, the Rayleigh and Lognormal lifetime distributions.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Balakrishnan N. and Aggarwala R. (2000) Progressive Censoring: Theory Methods and Applications. Birkhauser Boston.

  • Balakrishnan N. and Asgharzadeh A. (2005). Inference for the scaled half-logistic distribution based on progressively Type II censored samples. Communications in Statistics-Theory and Methods 34 73-87.

  • Balakrishnan N. and Kannan N. (2000). Point and interval estimation for the parameters of the logistic distribution based on progressively Type-II censored samples. In N. Balakrishnan and C. R. Rao (Eds.) Handbook of statistics: Vol. 20 (pp. 431-456).

  • Balakrishnan N. Kannan N. Lin C. T. and Ng H. K. T. (2003). Point and interval estimation for the normal distribution based on progressively Type-II censored samples. IEEE Transactions on Reliability 52 90-95.

  • Balakrishnan N. and Sandhu R. A. (1995). A simple algorithm for generating progressively Type-II censored samples. The American Statistician 49(2) 229-230.

  • Cohen A. C. (1963). Progressively censored samples in life testing. Tecnometrics Volume 5 327-329.

  • Coppi R. Gil M.A. and Kiers H.A.L. (2006). The fuzzy approach to statistical analysis. Computational Statistics and Data Analysis 51(1) 114.

  • Denoeux T. (2011). Maximum likelihood estimation from fuzzy data using the EM algorithm Fuzzy Sets and Systems. 183(1) 72-91.

  • Dempster A.P. Laird N.M. and Rubin D.B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society Series B 39 1-38.

  • Dubois D. and Prade H.(1980). Fuzzy Sets and Systems: Theory and Applications. Academic Press New York.

  • Dyer D. D. and Whisenand C. W. (1973). Best linear estimator of the parameter of the Rayleigh distribution-Part I: Small sample theory for censored order statistics. IEEE Transactions on Reliability 22 27-34.

  • Gebhardt J. Gil M.A. and Kruse R. (1998). Fuzzy set-theoretic methods in statistics in: R. Slowinski(Ed.) Fuzzy Sets in Decision Analysis Operations Research and Statistics Kluwer Academic Publishers Boston pp.311-347.

  • Huang H. Zuo M. and Sun Z. (2006). Bayesian reliability analysis for fuzzy lifetime data. Fuzzy Sets and Systems 157 16741686.

  • Kim C. and Han K. (2009). Estimation of the scale parameter of the Rayleigh distribution under general progressive censoring Journal of the Korean Statistical Society 38 239-246.

  • Mann N. R. (1971). Best linear invariant estimator for Weibull parameters under progressive censoring. Technometrics 13 521-533.

  • Pak A. Parham G.H. and Saraj M. (2013). On estimation of Rayleigh scale parameter under doubly Type-II censoring from imprecise data. Journal of Data Science 11 303-320.

  • Pak A. Parham G.H. and Saraj M. (2014). Inferences on the Competing Risk Reliability Problem for Exponential Distribution Based on Fuzzy Data. IEEE Transactions on reliability 63(1) 2-13.

  • Polovko A. M. (1968) Fundamentals of Reliability Theory. New York: Academic Press.

  • Pradhan B. and Kundu D. (2009). On progressively censored generalized exponential distribution Test 18 497-515.

  • Raqab M. Z. and Madi M. T. (2002). Bayesian prediction of the total time on test using doubly censored Rayleigh data. Journal of Statistical Computation and Simulation 72 781-789.

  • Singpurwalla N.D. and Booker J.M. (2004). Membership functions and probability measures of fuzzy sets. Journal of the American Statistical Association 99(467) 867877.

  • Thomas D. R. Wilson W. M. (1972) Linear order statistic estimation for the two-parameter Weibull and extreme value distributions from Type-II progressively censored samples. Technometrics 14 679-691.

  • Viveros R. and Balakrishnan N. (1994). Interval estimation of life characteristics from progressively censored data. Technometrics 36 84-91.

  • Zadeh L. A. (1968). Probability measures of fuzzy events Journal of Mathematical Analysis and Applications10 421-427.

  • Zimmermann H. J. (1991). Fuzzy set teory and its application Kluwer Dordrecht.

Search
Journal information
Impact Factor
Mathematical Citation Quotient (MCQ) 2017: 0.06

Target audience:

researchers in the fields of informatics, information technologies, statistics and mathematics

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 240 143 1
PDF Downloads 91 68 2