In this paper, numerical solutions of the generalized Burgers-Huxley equation are obtained using a new technique of forming improved exponential finite difference method. The technique is called implicit exponential finite difference method for the solution of the equation. Firstly, the implicit exponential finite difference method is applied to the generalized Burgers-Huxley equation. Since the generalized Burgers-Huxley equation is nonlinear the scheme leads to a system of nonlinear equations. Secondly, at each time-step Newton’s method is used to solve this nonlinear system then linear equations system is obtained. Finally, linear equations system is solved using Gauss elimination method at each time-step. The numerical solutions obtained by this way are compared with the exact solutions and obtained by other methods to show the efficiency of the method.
[1] X. Y. Wang Z. S. Zhu Y. K. Lu Solitary wave solutions of the generalized Burgers-Huxley equation J. Phys. A: Math. Gen. 23 (1990) 271-274.
[2] H. N. A. Ismail K. Raslan A. A. Abd-Rabboh Adomian decomposition method for Burgers-Huxley and Burgers-Fisher equations Appl. Math. Comput. 159 (2004) 291-301.
[3] I. Hashim M. S. M. Noorani M. R. Said Al-Hadidi Solving the generalized Burgers-Huxley Equation using the Adomian decomposition method Math. Comput. Model. 43 (2006) 1404-1411.
[4] M. Javidi A numerical solution of the generalized Burger’s-Huxley equation by pseudospectral method and Darvishi’s preconditioning Appl. Math. Comput. 175 (2006) 1619-1628.
[5] M. Javidi A numerical solution of the generalized Burger’s-Huxley equation by spectral collocation method Appl. Math. Comput. 178 (2006) 338-344.
[6] M. T. Darvishi S. Kheybari F. Khani Spectral collocation method and Darvishi’s preconditionings to solve the generalized Burgers-Huxley equation Commun. Nonlinear Sci. Numer. Simul. 13 (2008) 2091-2103.
[7] B. Batiha M. S. M. Noorani I. Hashim Application of variational iteration method to the generalized Burgers-Huxley equation Chaos Soliton Fract. 36 (2008) 660-663.
[8] M. Sari G. Gürarslan Numerical solutions of the generalized Burgers-Huxley equation by a differential quadrature method Math. Probl. Eng. 2009 doi: 10.1155/2009/370765.
[9] A. J. Khattak A computational meshless method for the generalized Burger’s-Huxley equation Appl. Math. Model. 33 (2009) 3218-3729.
[10] M. Javidi A. Golbabai A new domain decomposition algorithm for generalized Burger’s-Huxley equation based on Chebyshev polynomials and preconditioning Chaos Soliton Fract. 39 (2009) 849-857.
[11] J. Biazar F. Mohammadi Application of differential transform method to the generalized Burgers-Huxley equation Appl. Appl. Math. 5 (2010) 1726-1740.
[12] A. G. Bratsos A fourth order improved numerical scheme for the generalized Burgers-Huxley equation American J. Comput. Math. 1 (2011) 152-158.
[13] M. Dehghan B. N. Saray M. Lakestani Three methods based on the interpolation scaling functions and the mixed collocation finite difference schemes for the numerical solution of the nonlinear generalized Burgers-Huxley equation Math. Computer Model. 55 (2012) 1129-1142.
[14] İ. Çelik Haar wavelet method for solving generalized Burgers-Huxley equation Arab J. Math. Sci. 18 (2012) 25-37.
[15] M. El-Kady S. M. El-Sayed H. E. Fathy Development of Galerkin method for solving the generalized Burger’s Huxley equation Math. Probl. Eng. 2013 doi: 10.1155/2013/165492.
[16] A. M. Al-Rozbayani Discrete Adomian decomposition method for solving Burger’s-Huxley Equation Int. J. Contemp. Math. Sci. 8 (2013) 623-631.
[17] R. C. Mittal A. Tripathi Numerical solutions of generalized Burgers-Fisher and generalized Burgers–Huxley equations using collocation of cubic B-splines Int. J. Comput. Math. 5 (2015) 1053–1077.
[18] İ. Çelik Chebyshev Wavelet collocation method for solving generalized Burgers-Huxley equation Math. Meth. Appl. Sci. 2015 doi: 10.1002/mma.3487
[19] M. C. Bhattacharya An explicit conditionally stable finite difference equation for heat conduction problems Int. J. Num. Meth. Eng. 21 (1985) 239-265.
[20] M. C. Bhattacharya Finite difference solutions of partial differential equations Commun. Appl. Numer. Meth. 6 (1990) 173-184.
[21] R. F. Handschuh T. G. Keith Applications of an exponential finite-difference technique Numer. Heat Transfer. 22 (1992) 363-378.
[22] A. R. Bahadır Exponential finite-difference method applied to Korteweg-de Vries equation for small times Appl. Math. Comput. 160 (2005) 675-682.
[23] B. Inan A. R. Bahadir Numerical solution of the one-dimensional Burgers equation: Implicit and fully implicit exponential finite difference methods Pramana J. Phys. 81 (2013) 547-556.