MIDACO Parallelization Scalability on 200 MINLP Benchmarks

Open access


This contribution presents a numerical evaluation of the impact of parallelization on the performance of an evolutionary algorithm for mixed-integer nonlinear programming (MINLP). On a set of 200 MINLP benchmarks the performance of the MIDACO solver is assessed with gradually increasing parallelization factor from one to three hundred. The results demonstrate that the efficiency of the algorithm can be significantly improved by parallelized function evaluation. Furthermore, the results indicate that the scale-up behaviour on the efficiency resembles a linear nature, which implies that this approach will even be promising for very large parallelization factors. The presented research is especially relevant to CPU-time consuming real-world applications, where only a low number of serial processed function evaluation can be calculated in reasonable time.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Babu B. Angira A. A differential evolution approach for global optimisation of minlp problems In: Proceedings of the Fourth Asia Pacific Conference on Simulated Evolution and Learning (SEAL 2002) Singapore 2002 pp. 880–884.

  • [2] Cardoso M.F. Salcedo R.L. Azevedo S.F. Barbosa D. A simulated annealing approach to the solution of MINLP problems Computers Chem. Engng. 12(21) 1997 pp. 1349–1364.

  • [3] Costa L. Oliveira P. Evolutionary algorithms approach to the solution of mixed integer non-linear programming problems Comput Chem Eng 25(23) 2001 257-266.

  • [4] Deep K. Krishna P.S. Kansal M.L. Mohan C. A real coded genetic algorithm for solving integer and mixed integer optimization problems. Appl. Math. Comput. 212(2) 2009 pp. 505–518.

  • [5] European Space Agency (ESA) and Advanced Concepts Team (ACT) Gtop database - global optimisation trajectory problems and solutions Software available at http://www.esa.int/gsp/ACT/inf/op/globopt.htm 2011.

  • [6] Glover F. Parametric tabu-search for mixed integer programs Comput Oper Res 33(9) 2006 24492494.

  • [7] Gupta S. Tan G. A scalable parallel implementation of evolutionary algorithms for multi-objective optimization on GPUs Evolutionary Computation (CEC) IEEE Congress on Sendai 2015 pp. 1567–1574.

  • [8] Quinn J.M. Parallel Programming in C with MPI and OpenMP McGraw-Hill 2003.

  • [9] GAMS MINLPlib - A collection of Mixed Integer Nonlinear Programming models. Washington DC USA; software available at http://www.gamsworld.org/minlp/minlplib.htm 2016.

  • [10] Laessig J. Sudholt D. General upper bounds on the runtime of parallel evolutionary algorithms Evolutionary Computation vol. 22 no. 3 2014 pp. 405-437.

  • [11] Liang B. Wang J. Jiang Y. Huang D. Improved Hybrid Differential Evolution-Estimation of Distribution Algorithm with Feasibility Rules for NLP/MINLP Engineering Optimization Problems Chin. J. Chem. Eng. 20(6) 2012 pp. 1074–1080.

  • [12] Mohamed A.W. An efficient modified differential evolution algorithm for solving constrained non-linear integer and mixed-integer global optimization problems. Int. J. Mach. Learn. & Cyber. 2015 pp. 1–19.

  • [13] Munawar A. Redesigning Evolutionary Algorithms for Many-Core Processors Ph.D. Thesis Graduate School of Information Science and Technology Hokkaido University Japan 2012.

  • [14] Du X. Ni Y. Yao Z. Xiao R. High performance parallel evolutionary algorithm model based on MapReduce framework Int. J. Computer Applications in Technology Vol. 46 No. 3 2013 pp. 290–296.

  • [15] Powell D. Hollingsworth J. A NSGA-II web-enabled parallel optimization framework for NLP and MINLP Proceedings of the 9th annual conference on Genetic and evolutionary computation 2007 pp. 2145–2150.

  • [16] Sakuray Pais M. Yamanaka K. Rodrigues Pinto E. Rigorous Experimental Performance Analysis of Parallel Evolutionary Algorithms on Multicore Platforms In IEEE Latin America Transactions vol. 12 no. 4 2014 pp. 805–811.

  • [17] Schlueter M. Egea J.A. Banga J.R. Extended ant-colony optimization for non-convex mixed integer nonlinear programming Comput. Oper. Res. 36(7) 2009 2217–2229.

  • [18] Schlueter M. Gerdts M. The Oracle Penalty Method. J. Global Optim. 47(2) 2010 293–325.

  • [19] Schlueter M. Gerdts M. Rueckmann J.J. A Numerical Study of MIDACO on 100 MINLP Benchmarks Optimization 7(61) 2012 pp. 873–900.

  • [20] Schlueter M. Erb S. Gerdts M. Kemble S. Rueckmann J.J. MIDACO on MINLP Space Applications Advances in Space Research 51(7) 2013 1116–1131.

  • [21] Schlueter M. MIDACO Software Performance on Interplanetary Trajectory Benchmarks Advances in Space Research 54(4) 2014 744–754.

  • [22] Schlueter M. MIDACO Solver - Global Optimization Software for Mixed Integer Nonlinear Programming Software available at http://www.midaco-solver.com 2016.

  • [23] Schlueter M. Munetomo M. Numerical Assessment of the Parallelization Scalability on 200 MINLP Benchmarks Proc. of the IEEE-CEC2016 Conference Vancouver Canada 2016.

  • [24] K. Schittkowski A Collection of 200 Test Problems for Nonlinear Mixed-Integer Programming in Fortran (User Guide) Report Department of Computer Science University of Bayreuth Bayreuth 2012.

  • [25] K. Schittkowski NLPQLP - A Fortran implementation of a sequential quadratic programming algorithm with distributed and non-monotone line search (User Guide) Report Department of Computer Science University of Bayreuth Bayreuth 2009.

  • [26] K. Socha and M. Dorigo Ant colony optimization for continuous domains Eur. J. Oper. Res. 85 2008 pp. 1155–1173.

  • [27] Sudholt D. Parallel Evolutionary Algorithms In Janusz Kacprzyk and Witold Pedrycz (Eds.): Handbook of Computational Intelligence Springer 2015.

  • [28] Wasanapradit T. Mukdasanit N. Chaiyaratana N. Srinophakun T. Solving mixed-integer nonlinear programming problems using improved genetic algorithms Korean J. Chem. Eng. 28(1) 2011 32–40.

  • [29] Yiqing L. Xigang Y. Yongjian L. An improved PSO algorithm for solving non-convex NLP/MINLP problems with equality constraints Comp. Chem. Eng. 3(31) 2007 153–162.

  • [30] Young C.T. Zheng Y. Yeh C.W. Jang S.S. Information-guided genetic algorithm approach to the solution of MINLP problems Ind. Eng. Chem. Res. 46 2007 pp. 1527–1537.

  • [31] Yingyong Z. Yongde Z. Qinghua L. Jingang J. Guangbin Y. Improved Multi-objective Genetic Algorithm Based on Parallel Hybrid Evolutionary Theory International Journal of Hybrid Information Technology Vol.8 No.1 2015 pp. 133–140.

  • [32] Yue T. Guan-Zheng T. Shu-Guang D. Hybrid particle swarm optimization with chaotic search for solving integer and mixed integer programming problems. J. Central South Univ. 2014 21:2731–2742.

Journal information
Impact Factor

CiteScore 2018: 4.70

SCImago Journal Rank (SJR) 2018: 0.351
Source Normalized Impact per Paper (SNIP) 2018: 4.066

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 294 158 3
PDF Downloads 94 56 1