Rough Support Vector Machine for Classification with Interval and Incomplete Data

Open access


The paper presents the idea of connecting the concepts of the Vapnik’s support vector machine with Pawlak’s rough sets in one classification scheme. The hybrid system will be applied to classifying data in the form of intervals and with missing values [1]. Both situations will be treated as a cause of dividing input space into equivalence classes. Then, the SVM procedure will lead to a classification of input data into rough sets of the desired classes, i.e. to their positive, boundary or negative regions. Such a form of answer is also called a three–way decision. The proposed solution will be tested using several popular benchmarks.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Clark P.G. Grzymala-Busse J.W.: Mining incomplete data with lost values and attribute-concept values. In: 2014 IEEE International Conference on Granular Computing (GrC) pp. 49–54 (2014). DOI 10.1109/GRC.2014.6982806

  • [2] Cortes C. Vapnik V.: Support-vector networks. Machine Learning 20(3) 273–297 (1995)

  • [3] Fisher R.A.: The use of multiple measurements in taxonomic problems. Annual Eugenics 7 179–188 (1936)

  • [4] Hao Z. Liu B. Yang X.: A comparision of multiclass support vector machine algorithms. In: 2006 International Conference on Machine Learning and Cybernetics pp. 4221–4226 (2006). DOI 10.1109/ICMLC.2006.258947

  • [5] Hearst M.A. Dumais S.T. Osuna E. Platt J. Scholkopf B.: Support vector machines. IEEE Intelligent Systems and their Applications 13(4) 18–28 (1998). DOI 10.1109/5254.708428

  • [6] Jin B. Tang Y. Zhang Y.Q.: Support vector machines with genetic fuzzy feature transformation for biomedical data classification. Information Sciences 177(2) 476 – 489 (2007). DOI

  • [7] Lingras P. Butz C.: Rough set based 1-v-1 and 1-v-r approaches to support vector machine multi-classification. Information Sciences 177(18) 3782 – 3798 (2007). DOI

  • [8] Little R.J.A. Rubin D.B.: Statistical analysis with missing data 2 edn. Wiley–Interscience (2002)

  • [9] Ma Y. Guo G. (eds.): Support Vector Machines Applications. Springer (2014)

  • [10] Nowicki R.K.: Rough SetBased Classification Systems. Springer International Publishing Cham (2019). DOI 10.1007/978-3-030-03895-3

  • [11] Pawlak Z.: Information systems — theoretical foundations. Information Systems 6 205–218 (1981)

  • [12] Pawlak Z.: Rough sets. International Journal of Computer and Information Sciences 11(5) 341–356 (1982)

  • [13] Scholkopf B. Kah-Kay Sung Burges C.J.C. Girosi F. Niyogi P. Poggio T. Vapnik V.: Comparing support vector machines with gaussian kernels to radial basis function classifiers. IEEE Transactions on Signal Processing 45(11) 2758–2765 (1997). DOI 10.1109/78.650102

  • [14] Song H. Ding Z. Guo C. Li Z. Xia H.: Research on combination kernel function of support vector machine. In: 2008 International Conference on Computer Science and Software Engineering vol. 1 pp. 838–841 (2008). DOI 10.1109/CSSE.2008.1231

  • [15] Vapnik V.: Estimation of Dependences Based on Empirical Data. Springer-Verlag (1982)

  • [16] Vapnik V.: Statistical Learning Theory. Wiley (1998)

  • [17] Weston J. Watkins C.: Multi-class support vector machines. In: Proceedings of ESANN99 (1999)

  • [18] Xiao H. Sun F. Liang Y.: Support vector machine algorithm based on kernel hierarchical clustering for multiclass classification. In: 2010 International Conference on Electrical and Control Engineering pp. 2201–2204 (2010). DOI 10.1109/iCECE.2010.542

  • [19] Zhang J. Wang Y.: A rough margin based support vector machine. Information Sciences 178(9) 2204 – 2214 (2008). DOI

Journal information
Impact Factor

CiteScore 2018: 4.70

SCImago Journal Rank (SJR) 2018: 0.351
Source Normalized Impact per Paper (SNIP) 2018: 4.066

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 98 98 48
PDF Downloads 130 130 49