A Strong and Efficient Baseline for Vehicle Re-Identification Using Deep Triplet Embedding

Open access

Abstract

In this paper we tackle the problem of vehicle re-identification in a camera network utilizing triplet embeddings. Re-identification is the problem of matching appearances of objects across different cameras. With the proliferation of surveillance cameras enabling smart and safer cities, there is an ever-increasing need to re-identify vehicles across cameras. Typical challenges arising in smart city scenarios include variations of viewpoints, illumination and self occlusions. Most successful approaches for re-identification involve (deep) learning an embedding space such that the vehicles of same identities are projected closer to one another, compared to the vehicles representing different identities. Popular loss functions for learning an embedding (space) include contrastive or triplet loss. In this paper we provide an extensive evaluation of triplet loss applied to vehicle re-identification and demonstrate that using the recently proposed sampling approaches for mining informative data points outperform most of the existing state-of-the-art approaches for vehicle re-identification. Compared to most existing state-of-the-art approaches, our approach is simpler and more straightforward for training utilizing only identity-level annotations, along with one of the smallest published embedding dimensions for efficient inference. Furthermore in this work we introduce a formal evaluation of a triplet sampling variant (batch sample) into the re-identification literature. In addition to the conference version [24], this submission adds extensive experiments on new released datasets, cross domain evaluations and ablation studies.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] M. Abadi A. Agarwal P. Barham E. Brevdo Z. Chen C. Citro G. S. Corrado A. Davis J. Dean M. Devin S. Ghemawat I. Goodfellow A. Harp G. Irving M. Isard Y. Jia R. Jozefowicz L. Kaiser M. Kudlur J. Levenberg D. Mané R. Monga S. Moore D. Murray C. Olah M. Schuster J. Shlens B. Steiner I. Sutskever K. Talwar P. Tucker V. Vanhoucke V. Vasudevan F. Viégas O. Vinyals P. Warden M. Wattenberg M. Wicke Y. Yu and X. Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems 2015. Software available from tensorflow.org.

  • [2] Y. Bai Y. Lou F. Gao S. Wang Y. Wu and L. Duan. Group Sensitive Triplet Embedding for Vehicle Reidentification. IEEE Transactions on Multimedia 2018.

  • [3] S. Bak M. S. Biagio R. Kumar V. Murino and F. Bremond. Exploiting Feature Correlations by Brownian Statistics for People Detection and Recognition. IEEE Transactions on Systems Man and Cybernetics 2017.

  • [4] J. Bromley J. W. Bentz L. Bottou I. Guyon Y. Lecun C. Moore E. Säckinger and R. Shah. Signature Verification Using a “Siamese” Time Delay Neural Network. International Journal of Pattern Recognition and Artificial Intelligence 1993.

  • [5] S. Chopra R. Hadsell and Y. LeCun. Learning a similiarty metric discriminatively with application to face verification. In CVPR 2005.

  • [6] M. Farenzena L. Bazzani A. Perina V. Murino and M. Cristani Person Re-Identication by Symmetry-Driven Accumulation of Local Features. In CVPR 2010.

  • [7] I. J. Goodfellow J. Pouget-Abadie M. Mirza B. Xu D. Warde-Farley S. Ozair A. Courville and Y. Bengio. Generative Adversarial Networks. In NIPS 2014.

  • [8] H. Z. Gu and S. Y. Lee. Car model recognition by utilizing symmetric property to overcome severe pose variation. Machine Vision and Applications 2013.

  • [9] H. Guo C. Zhao Z. Liu J. Wang and H. Lu. Learning Coarse-to-Fine Structured Feature Embedding for Vehicle Re-Identification. In AAAI 2018.

  • [10] K. He R. B. Girshick and P. Dollár. Rethinking imagenet pre-training. CoRR’18

  • [11] K. He X. Zhang S. Ren and J. Sun. Deep Residual Learning for Image Recognition. In CVPR 2016.

  • [12] A. Hermans L. Beyer and B. Leibe. In Defense of the Triplet Loss for Person Re-Identification. In CoRR 2017.

  • [13] S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural Computation 1997.

  • [14] E. Hoffer and N. Ailon. Deep metric learning using triplet network. In ICLR Workshops 2015.

  • [15] A. G. Howard M. Zhu B. Chen D. Kalenichenko W. Wang T. Weyand M. Andreetto and H. Adam. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. In CVPR 2017.

  • [16] Q. Hu H. Wang T. Li and C. Shen. Deep CNNs with Spatially Weighted Pooling for Fine-Grained Car Recognition. IEEE Transactions on Intelligent Transportation Systems 2017.

  • [17] V. Jain Z. Sasindran A. Rajagopal S. Biswas H. S. Bharadwaj and K. R. Ramakrishnan. Deep automatic license plate recognition system. ICVGIP 2016.

  • [18] Jia Deng Wei Dong R. Socher Li-Jia Li Kai Li and Li Fei-Fei. ImageNet: A large-scale hierarchical image database. In CVPR 2009.

  • [19] A. Kanaci X. Zhu and S. Gong. Vehicle Re-Identification by Fine-Grained Cross-Level Deep Learning. In BMVC 2017.

  • [20] A. Kanaci X. Zhu and S. Gong. Vehicle reidentification in context. In Pattern Recognition -40th German Conference GCPR 2018 Stuttgart Germany September 10-12 2018 Proceedings 2018.

  • [21] P. Khorramshahi A. Kumar N. Peri S. S. Rambhatla J.-C. Chen and R. Chellappa. A dual-path model with adaptive attention for vehicle reidentification. In ICCV’19

  • [22] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. In ICLR 2015.

  • [23] R. Kumar G. Charpiat and M. Thonnat. Multiple Object Tracking by Efficient Graph Partitioning. In ACCV’14

  • [24] R. Kumar E. Weill F. Aghdasi and P. Sriram. Vehicle re-identification: an efficient baseline using triplet embedding. In IJCNN’19

  • [25] L. Liao R. Hu J. Xiao Q. Wang J. Xiao and J. Chen. Exploiting effects of parts in fine-grained categorization of vehicles. In ICIP 2015.

  • [26] S. Liao Y. Hu X. Zhu and S. Z. Li. Person reidentification by Local Maximal Occurrence representation and metric learning. In CVPR 2015.

  • [27] Y. L. Lin V. I. Morariu W. Hsu and L. S. Davis. Jointly optimizing 3D model fitting and fine-grained classification. In ECCV 2014.

  • [28] H. Liu Y. Tian Y. Wang L. Pang and T. Huang. Deep Relative Distance Learning: Tell the Difference Between Similar Vehicles. In CVPR 2016.

  • [29] X. Liu W. Liu H. Ma and H. Fu. Large-scale vehicle re-identification in urban surveillance videos. ICME 2016.

  • [30] X. Liu H. Ma H. Fu and M. Zhou. Vehicle Retrieval and Trajectory Inference in Urban Traffic Surveillance Scene. In ICDSC 2014.

  • [31] Y. Lou Y. Bai J. Liu S. Wang and L.-Y. Duan. A large-scale dataset for vehicle re-identification in the wild. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019.

  • [32] P. Luo C. C. Loy X. Tang L. Yang P. Luo C. C. Loy and X. Tang. A Large-Scale Car Dataset for Fine-Grained Categorization and Verification. In CVPR 2015.

  • [33] B. Ma Y. Su F. Jurie B. Ma Y. Su and F. Jurie. Local Descriptors Encoded by Fisher Vectors for Person Re-identification. In ECCV Workshops 2012.

  • [34] B. P. Ma Y. Su and F. Jurie. BiCov: a novel image representation for person re-identification and face verification. In BMVC 2012.

  • [35] R. Manmatha C. Y. Wu A. J. Smola and P. Krahenbuhl. Sampling Matters in Deep Embedding Learning. In CVPR 2017.

  • [36] A. Mishchuk D. Mishkin F. Radenovic and J. Matas. Working hard to know your neighbor’s margins: Local descriptor learning loss. In NIPS 2017.

  • [37] V. Mnih N. Heess A. Graves and K. Kavukcuoglu. Recurrent Models of Visual Attention. In NIPS 2014.

  • [38] M. Naphade M.-C. Chang A. Sharma C. Anastasiu David V. Jagarlamudi P. Chakraborty T. Huang S. Wang M. Y. Liu R. Chellappa J.-N. Hwang and S. Lyu. The 2018 NVIDIA AI City Challenge. CVPR Workshops 2018.

  • [39] O. Rippel M. Paluri P. Dollar and L. Bourdev. Metric Learning with Adaptive Density Discrimination. In ICLR 2016.

  • [40] E. Ristani and C. Tomasi. Features for Multi-Target Multi-Camera Tracking and Re-Identification. In CVPR 2018.

  • [41] F. Schroff D. Kalenichenko and J. Philbin. FaceNet: A unified embedding for face recognition and clustering. In CVPR 2015.

  • [42] L. Shen Z. Lin and Q. Huang. Relay Backpropagation for Effective Learning of Deep Convolutional Neural Networks. In ECCV 2016.

  • [43] Y. Shen T. Xiao H. Li S. Yi and X. Wang. Learning Deep Neural Networks for Vehicle Re-ID with Visual-spatio-Temporal Path Proposals. ICCV 2017.

  • [44] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. CoRR’14

  • [45] K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for Large-Scale Image Recognition. In ICLR 2015.

  • [46] J. Sochor A. Herout and J. Havel. BoxCars: 3D Boxes as CNN Input for Improved Fine-Grained Vehicle Recognition. In CVPR 2016.

  • [47] J. Spanhel J. Sochor R. Juranek A. Herout L. Marsik and P. Zemcik. Holistic recognition of low quality license plates by CNN using track annotated data. AVSS 2017.

  • [48] S. Tang M. Andriluka B. Andres and B. Schiele. Multiple people tracking by lifted multicut and person re-identification. In CVPR 2017.

  • [49] Z. Tang M. Naphade S. Birchfield J. Tremblay W. Hodge R. Kumar S. Wang and X. Yang. Pamtri: Pose-aware multi-task learning for vehicle re-identification using highly randomized synthetic data. In ICCV’19

  • [50] Z. Tang M. Naphade M.-Y. Liu X. Yang S. Birchfield S. Wang R. Kumar D. Anastasiu and J.-N. Hwang. Cityflow: A city-scale benchmark for multi-target multi-camera vehicle tracking and reidentification. In CVPR’19

  • [51] O. Tuzel F. Porikli and P. Meer. Region covariance: A fast descriptor for detection and classification. In European Conference on Computer Vision pages 589–600 2006.

  • [52] Y. Wang L. Xie S. Qiao Y. Zhang W. Zhang and A. L. Yuille. A Deep Learning-Based Approach to Progressive Vehicle Re-identification for Urban Surveillance. In ECCV 2016.

  • [53] Z. Wang L. Tang X. Liu Z. Yao S. Yi J. Shao J. Yan S. Wang H. Li and X. Wang. Orientation Invariant Feature Embedding and Spatial Temporal Regularization for Vehicle Re-identification. In ICCV 2017.

  • [54] K. Q. Weinberger and L. K. Saul. Distance Metric Learning for Large Margin Nearest Neighbor Classification. The Journal of Machine Learning Research 10:207–244 2009.

  • [55] L. Wen D. Du Z. Cai Z. Lei M. Chang H. Qi J. Lim M. Yang and S. Lyu. UA-DETRAC: A new benchmark and protocol for multi-object detection and tracking.

  • [56] N. Wojke and A. Bewley. Deep Cosine Metric Learning for Person Re-identification. In WACV 2018.

  • [57] T. Xiao H. Li W. Ouyang and X. Wang. Learning Deep Feature Representations with Domain Guided Dropout for Person Re-identification. In CVPR 2016.

  • [58] K. Yan Y. Tian Y. Wang W. Zeng and T. Huang. Exploiting Multi-grain Ranking Constraints for Precisely Searching Visually-similar Vehicles. In ICCV 2017.

  • [59] D. Zapletal A. Herout and A. Herout. Vehicle Re-Identification for Automatic Video Traffic Surveil-lance. In CVPR Workshops 2016.

  • [60] L. Zhang T. Xiang and S. Gong. Learning a Discriminative Null Space for Person Re-identification. In CVPR 2016.

  • [61] Y. Zhou and L. Shao. Vehicle Re-Identification by Adversarial Bi-Directional LSTM Network. In WACV 2018.

  • [62] Y. Zhou and L. Shao. Viewpoint-aware Attentive Multi-view Inference for Vehicle Re-identification. In CVPR 2018.

Search
Journal information
Impact Factor


CiteScore 2018: 4.70

SCImago Journal Rank (SJR) 2018: 0.351
Source Normalized Impact per Paper (SNIP) 2018: 4.066

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 163 163 59
PDF Downloads 168 168 65