Conceptual Commitments of the LIDA Model of Cognition

Open access

Abstract

Significant debate on fundamental issues remains in the subfields of cognitive science, including perception, memory, attention, action selection, learning, and others. Psychology, neuroscience, and artificial intelligence each contribute alternative and sometimes conflicting perspectives on the supervening problem of artificial general intelligence (AGI). Current efforts toward a broad-based, systems-level model of minds cannot await theoretical convergence in each of the relevant subfields. Such work therefore requires the formulation of tentative hypotheses, based on current knowledge, that serve to connect cognitive functions into a theoretical framework for the study of the mind. We term such hypotheses “conceptual commitments” and describe the hypotheses underlying one such model, the Learning Intelligent Distribution Agent (LIDA) Model. Our intention is to initiate a discussion among AGI researchers about which conceptual commitments are essential, or particularly useful, toward creating AGI agents.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Anderson J. R. (2007). Using brain imaging to guide the development of a cognitive architecture. In W. D. Gray (Ed.) Integrated models of cognitive systems (pp. 49-62). New York: Oxford University Press.

  • Anderson J. R. Bothell D. Byrne M. D. Douglass S. Lebiere C. & Qin Y. (2004). An Integrated Theory of the Mind Psychological Review 111( 4) 1036-1060.

  • Armstrong I. T. & Mewhort D. (1995). Repetition deficit in rapid-serial-visual-presentation displays: Encoding failure or retrieval failure? Journal of Experimental Psychology:Human Perception and Performance 21(5) 1044.

  • Augustenborg C. C. (2010). The Endogenous Feedback Network: A new approach to the comprehensive study of consciousness. Consciousness and Cognition. doi: 10.1016/j.concog.2010.03.007

  • Baars B. Franklin S. & Ramsøy T. (2013). Global workspace dynamics: Cortical “binding and propagation” enables conscious contents. Frontiers in Consciousness Research 4 200. doi: 10.3389/fpsyg.2013.00200

  • Baars Bernard J. (1988). A Cognitive Theory of Consciousness. Cambridge: Cambridge University Press.

  • Baars Bernard J. (2002). The conscious access hypothesis: origins and recent evidence. Trends inCognitive Science 6 47-52.

  • Baars Bernard J. & Franklin S. (2003). How conscious experience and working memory interact. Trends in Cognitive Science 7 166-172.

  • Bach J. (2008). Seven principles of synthetic intelligence. In P. Wang G. Goertzel & S. Franklin (Eds.) Artif icial General Intelligence 2008: Proceedings of the First AGI Conference (pp. 63-74). Amsterdam: IOS Press.

  • Bach J. Goertzel B. & Iklé M. (Eds.). (2012). Artificial General Intelligence: 5th InternationalConference. Oxford UK: Springer.

  • Baddeley A. D. & Hitch G. J. (1974). Working memory. In G. A. Bower (Ed.) The Psychologyof Learning and Motivation. New York: Academic Press.

  • Barham J. (1996). A dynamical model of the meaning of information. BioSystems 38 235-241.

  • Barsalou L. W. (1999a). Perceptual symbol systems. Behavioral and Brain Sciences 22(04) 577-609.

  • Barsalou L. W. (1999b). Perceptual symbol systems. Behavioral and Brain Sciences 22 577-609.

  • Barsalou L. W. (2008). Grounded cognition. Annu. Rev. Psychol. 59 617-645.

  • Bjork E. L. & Bjork R. A. (1988). On the adaptive aspects of retrieval failure in autobiographical memory.

  • Block N. (2007). Consciousness Accessibility and the Mesh between Psychology and Neuroscience. Behavioral and Brain Sciences 30 481-548.

  • Boltea A. & Goschke T. (2008). Intuition in the context of object perception: Intuitive gestalt judgments rest on the unconscious activation of semantic representations. Cognition108(3) 608-616. doi: 10.1016/j.cognition.2008.05.001

  • Born J. & Wagner U. (2006). Memory Consolidat ion during Sleep: Role of Cortisol Feedback. Annals of the New York Academy of Sciences 1032 198 - 201. doi: 10.1196/annals.1314.020

  • Brainerd C. J. & Dempster F. N. (1995). Interference and inhibition in cognition: Academic Press.

  • Bullock T. H. (1993). Goals and Strategies in Brain Research: The Place of Comparative Neurology. In T. H. Bullock (Ed.) How Do Brains Work?: Papers of a ComparativeNeurophysiologist How Do Brains Work?: Papers of a Comparative Neurophysiologist. Boston: Birkhauser.

  • Campanella J. & Rovee‐ Collier C. (2005). Latent learning and deferred imitation at 3 months. Infancy 7(3) 243-262.

  • Canolty R. T. Edwards E. Dalal S. S. Soltani M. Nagarajan S. S. Kirsch H. E. Knight R. T. (2006). High gamma power is phase-locked to theta oscillat ions in human neocortex. Science 313(5793) 1626-1628.

  • Canolty R. T. & Knight R. T. (2010). The functional role of cross -frequency coupling. Trendsin Cognitive Sciences 14(11) 506-515. doi: 10.1016/j.tics.2010.09.001

  • Cansino S. (2009). Episodic memory decay along the adult lifespan: A review of behavioral and neurophysiological evidence. International Journal of Psychophysiology 71(1) 64-69.

  • Chamizo V. D. & Mackintosh N. (1989). Latent learning and latent inhibit ion in maze discriminations. The Quarterly Journal of Experimental Psychology 41(1) 21-31.

  • Chandler C. C. (1991). How memory for an event is influenced by related events: Interference in modified recognition tests. Journal of Experimental Psychology: Learning Memory andCognition 17 115-125.

  • Cleeremans A. Destrebecqz A. & Boyer M. (1998). Implicit learning: news from the front. Trends in Cognitive Sciences 2(10) 406-416.

  • Connor D. & Shanahan M. (2010). A computational model of a global neuronal workspace with stochastic connections. Neural Netw 23(10) 1139-1154. doi: S0893-6080(10)00143-7 [pii]10.1016/j.neunet.2010.07.005

  • Conway Martin A. (2001). Sensory-perceptual episodic memory and its context: autobiographical memory. Philos. Trans. R. Soc. Lond B. 356 1375-1384.

  • Conway M. A. (2002). Sensory-perceptual episodic memory and its context: Autobiographical memory. In A. Baddeley M. Conway & J. Aggleton (Eds.) Episodic Memory. Oxford: Oxford University Press.

  • Craik F. I. Routh D. a. Broadbent D. & Craik F. (1983). On the Transfer of Information from Temporary to Permanent Memory [and Discussion]. Philosophical Transactions of theRoyal Society of London. B Biological Sciences 302(1110) 341-359.

  • Cutsuridis V. Hussain A. & Taylor J. G. (2011). Perception-Action Cycle: ModelsArchitectures and Hardware (Vol. 1): Springer.

  • Daum M. M. Sommerville J. A. & Prinz W. (2009). Disentangling embodied and symbolic modes of social understanding. European Journal of Social Psychology 39(7) 1214-1216.

  • de Garis H. & Goertzel B. (2009a). Report on the 2nd International Conference on Artificial General Intelligence (AGI-09). AI Magazine 115~116.

  • de Garis H. & Goertzel B. (2009b). Report on the First Conference on Artificial General Intelligence (AGI-08). AI Magazine 30 121-123.

  • de Vega M. Glenberg A. & Graesser A. (Eds.). (2008). Symbols and Embodiment: Debates onmeaning and cognition. Oxford: Oxford University Press.

  • Dennett D. (2005). Sweet Dreams : Philosophical Obstacles to a Science of Consciousness. Cambridge MA: MIT Press.

  • Dennis J. L. & Schutter G. (2004). Extending the global workspace theory to emotion: Phenomenality without access. Consciousness and Cognition 13(3) 539-549.

  • Designing Intelligent Robots: Reintegrating AI II. (2012). AAAI Spring Symposium 2013 Retrieved December 21 2012 from http://people.csail.mit.edu/gdk/dir2/index.html

  • Dijkstra T. M. H. Schöner G. & Gielen C. C. A. M. (1994). Temporal stability of the actionperception cycle for postural control in a moving visual environment. Experimental BrainResearch 97(3) 477-486.

  • Doesburg S. Green J. McDonald J. & Ward L. (2009). Rhythms of Consciousness: Binocular Rivalry Reveals Large-Scale Oscillatory Network Dynamics Mediating Visual Perception. PLoS ONE 4(7) e6142. doi: 10.1371/journal.pone.0006142

  • Drescher Gary L. (1991). Made-Up Minds: A Constructivist Approach to Artificial Intelligence. Cambridge MA: MIT Press.

  • Edelman Gerald M. & Tononi G. (2000). A Universe of Consciousness. New York: Basic Books.

  • Eimer M. & Schlagecken F. (2003). Response facilitation and inhibit ion in subliminal priming. Biological Psychology 64 7-26.

  • Ericsson K. A. & Kintsch W. (1995). Long-term working memory. Psychological Review102(2) 211-245.

  • Faghihi U. & Franklin S. (2012). The LIDA Model as a Foundational Architecture for AGI. In P. Wang & B. Goertzel (Eds.) Theoretical Foundations of Artificial General Intelligence (pp. 105-123). Paris: Atlantis Press.

  • Faghihi U. McCall R. & Franklin S. (2012). A Computational Model of Attentional Learning in a Cognitive Agent. Biologically Inspired Cognitive Architectures 2 25-36.

  • Franklin S. (1997). Autonomous Agents as Embodied AI. Cybernetics and Systems 28 499-520.

  • Franklin S. & Baars B. J. (2010). Spontaneous remembering is the norm: What integrative models tell us about human consciousness and memory. In John H. Mace (Ed.) The Act ofRemembering: Toward an understanding of how we recall the past. Oxford: Blackwell.

  • Franklin S. Baars B. J. Ramamurthy U. & Ventura M. (2005). The Role of Consciousness in Memory. Brains Minds and Media 1 1-38.

  • Franklin S. & Ramamurthy U. (2006). Motivations Values and Emotions: Three sides of the same coin Proceedings of the Sixth International Workshop on Epigenetic Robotics (Vol. 128 pp. 41-48). Paris France: Lund University Cognitive Studies.

  • Franklin S. Strain S. Snaider J. McCall R. & Faghihi U. (2012). Global Workspace Theory its LIDA model and the underlying neuroscience. Biologically Inspired CognitiveArchitectures 1 32-43. doi: 10.1016/j.bica.2012.04.001

  • Franks N. R. Hooper J. W. Dornhaus A. Aukett P. J. Hayward A. L. & Berghoff S. M. (2007). Reconnaissance and latent learning in ants. Proceedings of the Royal Society B:Biological Sciences 274(1617) 1505-1509.

  • Freeman W. J. (2002). The limbic action-perception cycle controlling goal-directed animal behavior. Neural Networks 3 2249-2254.

  • Freeman W. J. (2003). A neurobiological theory of meaning in perception. Part 1. Information and meaning in nonconvergent and nonlocal brain dynamics. International Journal ofBifurcation and Chaos 13 2493-2511.

  • Fuster J. (2006). The cognit: a network model of cortical representation. International Journal ofPsychophysiology 60 125-132.

  • Fuster J. M. (2002). Physiology of executive functions: The perception-action cycle.

  • Fuster J. M. (2004). Upper processing stages of the perception-action cycle. Trends in CognitiveSciences 8(4) 143-145.

  • Fuster J. M. & Bressler S. L. (2012). Cognit activation: a mechanism enabling temporal integration in working memory. Trends in Cognitive Sciences 16(4) 207-218.

  • Gaillard R. Dehaene S. Adam C. Clémenceau S. Hasboun D. et al. (2009). Converging intracranial markers of conscious access. PLoS Biology 7(3) e1000061. doi: 10.1371/journal.pbio.1000061

  • Glenberg A. M. (1997). What memory is for. Behavioral and Brain Sciences 20(01) 1-19.

  • Glenberg A. M. & Robertson D. A. (2000). Symbol grounding and meaning: A comparison of high-dimensional and embodied theories of meaning. Journal of Memory and Language43(3) 379-401.

  • Goertzel B. & Pennachin C. (2007). Artificial General Intelligence. Berlin: Springer.

  • Goertzel B. & Wang P. (Eds.). (2007). Advances in artificial general intelligence : concepts architectures and algorithms. Amsterdam; Washington DC: IOS Press.

  • Graves Laurel A. Heller Elizabeth A. Pack Allan I. & Abel T. (2003). Sleep Deprivation Selectively Impairs Memory Consolidat ion for Contextual Fear Conditioning. Learning &Memory 10 168-176.

  • Gunzelmann G. Gluck K. A. Van Dongen H. P. A. O’Connor R. M. & Dinges D. F. (2005). A Neurobehaviorally Inspired ACT-R Model of Sleep Deprivation: Decreased Performance in Psychomotor Vigilance. In B. G. Bara L. Barsalou & M. Bucciarelli (Eds.) Proceedings of the Twenty-Seventh Annual Meeting of the Cognitive Science Society (pp. 857-862). Mahwah NJ: Lawrence Erlbaum Associates.

  • Hofstadter D. R. & Mitchell M. (1995). The Copycat Project: A model of mental fluidity and analogy-making. In K. J. Holyoak & J. Barnden (Eds.) Advances in connectionist andneural computation theory Vol. 2: logical connections (pp. 205-267). Norwood N.J.: Ablex.

  • Izhikevich E. M. & Edelman G. M. ( 2008). Large-Scale Model of Mammalian Thalamocortical Systems. PNAS 105 3593-3598.

  • Jimenez L. (2003). Attention and implicit learning: John Benjamins Publishing Company.

  • Johnston V. S. (1999). Why We Feel: The Science of Human Emotions. Reading MA: Perseus Books.

  • Kaelbling L. P. (1994). Associative Reinforcement Learning: A Generate and Test Algorithm. Machine Learning 15(3) 299-319.

  • Langley P. Laird J. E. & Rogers S. (2009). Cognitive Architectures: Research Issues and Challenges. Cognitive Systems Research 10(2) 141-160. doi: 10.1016/j.cogsys.2006.07.004

  • Lewin K. (1951). Field theory in sociall science: selected theoretical papers. New York: Harper & Row.

  • Longo M. R. (2009). What's embodied and how can we tell? European Journal of SocialPsychology 39(7) 1207-1209.

  • Madl T. Baars B. J. & Franklin S. (2011). The Timing of the Cognitive Cycle. PLoS ONE6(4) e14803. doi: 10.1371/journal.pone.0014803

  • Madl T. & Franklin S. (2012 April 13-15). A LIDA-based Model of the Attentional Blink. Paper presented at the 11th International Conference on Cognitive Modeling Berlin.

  • Maes P. (1989). How to do the right thing. Connection Science 1 291-323.

  • McGaugh J. L. (2000). Memory--a Century of Consolidat ion. Science 287(5451) 248-251. doi: 10.1126/science.287.5451.248

  • Miller R. R. & Matzel L. D. (2006). Retrieval failure versus memory loss in experimental amnesia: definitions and processes. Learning & Memory 13(5) 491-497.

  • Nadel L. Hupbach A. Gomez R. & Newman-Smith K. (2012). Memory formation consolidation and transformation. Neuroscience & Biobehavioral Reviews.

  • Neisser U. (1976). Cognition and Reality: Principles and Implications of Cognitive Psychology San Francisco: W. H. Freeman.

  • Newell A. (1973). You can’t play 20 questions with nature and win: Pro- jective comments on the papers of this symposium. In W. G. Chase (Ed.) Visual information processing. New York: Academic Press.

  • Nyhus E. & Curran T. (2010). Functional role of gamma and theta oscillations in episodic memory. Neuroscience & Biobehavioral Reviews 34(7) 1023-1035.

  • Osipova D. Takashima A. Oostenveld R. Fernández G. Maris E. & Jensen O. (2006). Theta and gamma oscillat ions predict encoding and retrieval of declarative memory. TheJournal of neuroscience 26(28) 7523-7531.

  • Panksepp J. (2005). Affective consciousness: Core emotional feelings in animals and humans. Consciousness and Cognition 14 30-80.

  • Pfeifer R. & Bongard J. C. (2006). How the body shapes the way we think: a new view of intelligence: MIT press.

  • Reber A. S. (1967). Implicit learning of artificial grammars. Journal of Verbal Learning andVerbal Behavior 6 855-863.

  • Remondes M. & Schuman Erin M. (2004). Role for a cortical input to hippocampal area CA1 in the consolidation of a long-term memory. Nature 431 699-703.

  • Roseman I. J. & Smith C. A. (2001). Appraisal theory: Overview assumptions varieties controversies Appraisal processes in emotion: Theory methods research (pp. 3-19). New York: Oxford University Press.Samsonovich A. V. (2008 November 7-9). BiologicallyInspired Cognitive Architectures: Papers from the AAAI Fall Symposium. Paper presented at the AAAI Fall Symposia Arlington Virginia.

  • Samsonovich A. V. (2010). Toward a Unified Catalog of Implemented Cognitive Architectures. In A. V. Samsonovich K. R. Jóhannsdóttir A. Chella & B. Goertzel (Eds.) Proceeding ofthe 2010 Conference on Biologically Inspired Cognitive Architectures (pp. 195-244). Amsterdam: IOS Press.

  • Samsonovich A. V. & Johannsdottir K. R. (Eds.). (2011). Biologically Inspired Cognitive Architectures 2011 - Proceedings of the Second Annual Meeting of the BICA Society (Vol. 233). Amsterdam: IOS Press.

  • Samsonovich A. V. Jóhannsdóttir K. R. J. Chella A. & Goertzel B. (Eds.). (2010). Biologically Inspired Cognitive Architectures 2010 - Proceedings of the First AnnualMeeting of the BICA Society (Vol. 221). Amsterdam: IOS Press.

  • Sauseng P. Griesmayr B. Freunberger R. & Klimesch W. (2010). Control mechanisms in working memory: a possible function of EEG theta oscillat ions. Neuroscience &Biobehavioral Reviews 34(7) 1015-1022.

  • Sauseng P. Klimesch W. Gruber W. R. & Birbaumer N. (2008). Cross-frequency phase synchronization: a brain mechanism of memory matching and attention. NeuroImage40(1) 308-317.

  • Schmidhuber J. Thorisson K. R. & Looks M. (2011 August 3-6). Artif icial GeneralIntelligence Proceedings. Paper presented at the 4th International Conference AGI 2011 Mountain View CA USA.

  • Sederberg P. B. Kahana M. J. Howard M. W. Donner E. J. & Madsen J. R. (2003). Theta and gamma oscillations during encoding predict subsequent recall. The Journal ofNeuroscience 23(34) 10809.

  • Sergent C. & Dehaene S. (2004). Neural processes underlying conscious perception: Experimental findings and a global neuronal workspace framework. Journal of Physiology-Paris 98(4-6) 374-384. doi: 10.1016/j.jphysparis.2005.09.006

  • Shanahan M. P. (2006). A Cognitive Architecture that Combines Internal Simulation with a Global Workspace. Consciousness and Cognition 15 433-449.

  • Shiffrin R. M. (1970). Forgetting: Trace erosion or retrieval failure? Science; Science.

  • Silverta L. Delplanquea S. Bouwalerha H. Verpoorta C. & Sequeira H. (2004). Autonomic responding to aversive words without conscious valence discrimination. Int. J. Psychophysiol. 53 135-145.

  • Sims C. R. & Gray W. D. (2004). Episodic versus semantic memory: An exploration of modelsof memory decay in the serial attention paradigm. Paper presented at the 6th international conference on cognitive modeling (ICCM-2004) Pittsburgh PA.

  • Sloman A. (Ed.). (1999). What Sort of Architecture is Required for a Human-like Agent? Dordrecht Netherlands: Kluwer Academic Publishers.

  • Smith C. A. & Kirby L. D. (2001). Toward delivering on the promise of appraisal theory. In K. R. Scherer A. Schorr & T. Johnstone (Eds.) Appraisal processes in emotion: TheoryMethods Research (pp. 121-138). New York: Oxford University Press. Snaider J. McCall R. & Franklin S. (2009). Time Production and Representation in aConceptual and Computational Cognitive Model. Paper presented at the AAAI Fall Symposium on Biologically Inspired Cognitive Architecture Washington DC.

  • Snaider J. McCall R. & Franklin S. (2011). The LIDA Framework as a General Tool for AGI. Paper presented at the The Fourth Conference on Artificial General Intelligence (Springer Lecture Notes in Artificial Intelligence) Mountain View California USA.

  • Stickgold R. & Walker Matthew P. (2005). Memory consolidation and reconsolidat ion: what is the role of sleep? Trends Neurosci. 28 408-415.

  • Strain S. F. Franklin S. Heck D. H. & Baars B. J. (in preparation). Brain rhythms cognitive cycles and mental moments.

  • Sukthankar G. (2000). Face recognition: a critical look at biologically-inspired approaches: Carnegie Mellon University the Robotics Institute.

  • Sun R. & Franklin S. (2007). Computational Models of Consciousness: A Taxonomy and some Examples. In P. D. Zelazo & M. Moscovitch (Eds.) Cambridge Handbook ofConsciousness (pp. 151-174). New York: Cambridge University Press.

  • Sun R. & Naveh I. (2004). Simulating organizat ional decision-making using a cognitively realistic agent model. Journal of Artif icial Societies and Social Simulation 7(3).

  • Sun R. Slusarz P. & Terry C. (2005). The interaction of the explicit and the implicit in skill learning: A dual-process approach. Psychological Review 112(1) 159-192.

  • Taylor J. G. (2011). A Review of Models of Consciousness. In V. Cutsuridis A. Hussain & J. G.

  • Taylor (Eds.) Perception-Action Cycle: Models Architectures and Hardware (pp. 335-357).

  • Tononi G. (2008). Consciousness as integrated information: a provisional manifesto. BiologicalBulletin 215 216-242.

  • Tort A. B. L. Komorowski R. W. Manns J. R. Kopell N. J. & Eichenbaum H. (2009). Theta-gamma coupling increases during the learning of item-context associations. PNAS106(49) 20942-20947

  • Tulving E. & Schacter D. L. (1990). Priming and human memory systems. Science 247 301-306.

  • Varela F. J. Thompson E. & Rosch E. (1991). The Embodied Mind: Cognitive Science andHuman Experience. Cambridge MA: MIT press.

  • Wallace R. (2005). Consciousness: A Mathematical Treatment of the Global Neuronal Workspace Model. New York: Springer.

  • Wamsley E. J. Tucker M. Payne J. D. Benavides J. A. & Stickgold R. (2010). Dreaming of a learning task is associated with enhanced sleep dependent memory consolidation. Current Biology.

  • Wang P. Goertzel B. & Franklin S. (2008). Artificial General Intelligence 2008. Amsterdam: IOS Press.

  • Wiedemann C. (2007). Memory consolidation...while you are sleeping. [10.1038/nrn2084]. NatRev Neurosci 8(2) 86-87.

  • Yang J. Xu X. Du X. Shi C. & Fang F. (2011). Effects of unconscious processing on implicit memory for fearful faces. PLoS ONE 6(2) e14641.

  • Yerkes R. M. & Dodson J. D. (1908). The Relationship of Strength of Stimulus to Rapidity of Habit Formation. Journal of Comparative Neurology and Psychology 18 459-482.

  • Zhang Q. (2009). A computational account of dreaming: Learning and memory consolidation. Cognitive Systems Research 10(2) 91-101

Search
Journal information
Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 388 143 1
PDF Downloads 166 65 0