On Defining Artificial Intelligence

Abstract

This article systematically analyzes the problem of defining “artificial intelligence.” It starts by pointing out that a definition influences the path of the research, then establishes four criteria of a good working definition of a notion: being similar to its common usage, drawing a sharp boundary, leading to fruitful research, and as simple as possible. According to these criteria, the representative definitions in the field are analyzed. A new definition is proposed, according to it intelligence means “adaptation with insufficient knowledge and resources.” The implications of this definition are discussed, and it is compared with the other definitions. It is claimed that this definition sheds light on the solution of many existing problems and sets a sound foundation for the field.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Adams, E. W. 1998. A Primer of Probability Logic. Stanford, California: CSLI Publications.

  • Albus, J. S. 1991. Outline for a Theory of Intelligence. IEEE Transactions on Systems, Man, and Cybernetics 21(3):473–509.

  • Allen, J. F. 1998. AI growing up: the changes and opportunities. AI Magazine 19(4):13–23.

  • Aristotle. 1882. The Organon, or, Logical treatises of Aristotle. London: George Bell. Translated by O. F. Owen.

  • Bach, J. 2009. Principles of Synthetic Intelligence PSI: An Architecture of Motivated Cognition. Oxford: Oxford University Press.

  • Beattie, C.; Leibo, J. Z.; Teplyashin, D.; Ward, T.; Wainwright, M.; Küttler, H.; Lefrancq, A.; Green, S.; Valdés, V.; Sadik, A.; Schrittwieser, J.; Anderson, K.; York, S.; Cant, M.; Cain, A.; Bolton, A.; Gaffney, S.; King, H.; Hassabis, D.; Legg, S.; and Petersen, S. 2016. DeepMind Lab. CoRR abs/1612.03801.

  • Bhatnagar, S.; Alexandrova, A.; Avin, S.; Cave, S.; Cheke, L.; Crosby, M.; Feyereisl, J.; Halina, M.; Loe, B. S.; hÉigeartaigh, S. O.; Martnez-Plumed, F.; Price, H.; Shevlin, H.; Weller, A.; Winfield, A.; and Hernández-Orallo, J. 2018. Mapping Intelligence: Requirements and Possibilities. In Müller, V. C., ed., Philosophy and Theory of Artificial Intelligence 2017. Berlin: Springer. 117–135.

  • Birnbaum, L. 1991. Rigor mortis: a response to Nilsson’s “Logic and artificial intelligence”. Artificial Intelligence 47:57–77.

  • Bostrom, N. 2014. Superintelligence: Paths, Dangers, Strategies. Oxford, UK: Oxford University Press, 1st edition.

  • Brachman, R. J. 2006. (AA)AI — more than the sum of its parts, 2005 AAAI Presidential Address. AI Magazine 27(4):19–34.

  • Cabrol, N. A. 2016. Alien Mindscapes – A Perspective on the Search for Extraterrestrial Intelligence. Astrobiology 16:661–676.

  • Carnap, R. 1950. Logical Foundations of Probability. Chicago: The University of Chicago Press.

  • Cohen, P. R. 2005. If Not Turing’s Test, then what? AI Magazine 26:61–67.

  • Davis, R. 1998. What are intelligence? and why? 1996 AAAI Presidential Address. AI Magazine 19(1):91–111.

  • Domingos, P. 2018. The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World. New York, NY, USA: Basic Books, Inc.

  • Executive Office of the President, USA. 2016. The National Artificial Intelligence Research and Development Strategic Plan.

  • Feigenbaum, E. A., and Feldman, J., eds. 1963. Computers and Thought. New York: McGraw-Hill.

  • Feigenbaum, E. A., and McCorduck, P. 1983. The Fifth Generation: Artificial Intelligence and Japan’s Computer Challenge to the world. Reading, Massachusetts: Addison-Wesley Publishing Company.

  • Flach, P. 2012. Machine Learning: The Art and Science of Algorithms That Make Sense of Data. New York, NY, USA: Cambridge University Press.

  • Franklin, S. 2007. A foundational architecture for artificial general intelligence. In Goertzel, B., and Wang, P., eds., Advance of Artificial General Intelligence. Amsterdam: IOS Press. 36–54.

  • Freeman, W. J. 1999. Consciousness, intentionality and causality. Journal of Consciousness Studies 6(11-12):143–172.

  • Goertzel, B., and Pennachin, C., eds. 2007. Artificial General Intelligence. New York: Springer.

  • Goertzel, B. 2009. Cognitive Synergy: A Universal Principle for Feasible General Intelligence? Dynamical Psychology.

  • Goertzel, B. 2014. Artificial General Intelligence: Concept, State of the Art, and Future Prospects. Journal of Artificial General Intelligence 5(1):1–46.

  • Goldman Sachs. 2016. Profiles in Innovation: Artificial Intelligence - AI, Machine Learning and Data Fuel the Future of Productivity.

  • Goldstein, S.; Princiotta, D.; and Naglieri, J. 2015. Handbook of intelligence: Evolutionary theory, historical perspective, and current concepts. New York: Springer.

  • Gottfredson, L. S. 1997. Mainstream science on intelligence: an editorial with 52 signatories, history, and bibliography. Intelligence 24:13–23.

  • Hájek, A. 2012. Interpretations of Probability. In Zalta, E. N., ed., The Stanford Encyclopedia of Philosophy. Winter 2012 edition. URL: http://plato.stanford.edu/archives/win2012/entries/probability-interpret/, accessed in May 20, 2019.

  • Hawkins, J., and Blakeslee, S. 2004. On Intelligence. New York: Times Books.

  • Hayes, P., and Ford, K. 1995. Turing Test Considered Harmful. In Mellish, C. S., ed., Proceedings of the 14th International Joint Conference on Artificial Intelligence - Volume 1, 972–977.

  • Hayes, P. J. 1977. In Defense of Logic. In Reddy, R., ed., Proceedings of the 5th International Joint Conference on Artificial Intelligence, 559–565.

  • Hearst, M. A., and Hirsh, H. 2000. AI’s Greatest Trends and Controversies. IEEE Intelligent Systems 8–17.

  • Hernández-Orallo, J. 2017. The Measure of All Minds: Evaluating Natural and Artificial Intelligence. Cambridge: Cambridge University Press.

  • Hofstadter, D. R., and FARG. 1995. Fluid Concepts and Creative Analogies: Computer Models of the Fundamental Mechanisms of Thought. New York: Basic Books.

  • Hofstadter, D. R. 1979. Gödel, Escher, Bach: an Eternal Golden Braid. New York: Basic Books.

  • Hofstadter, D. R. 1985. Waking up from the Boolean dream, or, subcognition as computation. In Metamagical Themas: Questing for the Essence of Mind and Pattern. New York: Basic Books. chapter 26.

  • Holland, J. H. 1992. Adaptation in Natural and Artificial Systems: An Introductory Analysis With Applications to Biology, Control, and Artificial Intelligence. Cambridge, Massachusetts: MIT Press.

  • Hopcroft, J. E.; Motwani, R.; and Ullman, J. D. 2007. Introduction to Automata Theory, Languages, and Computation. Boston: Addison-Wesley, 3rd edition.

  • Hsu, F.-h.; Campbell, M. S.; and Hoane, Jr., A. J. 1995. Deep Blue System Overview. In Proceedings of the 9th International Conference on Supercomputing, 240–244. New York, NY, USA: ACM.

  • Hume, D. 1748. An Enquiry Concerning Human Understanding. London.

  • Hutter, M. 2005. Universal Artificial Intelligence: Sequential Decisions based on Algorithmic Probability. Berlin: Springer.

  • Kirsh, D. 1991. Foundations of AI: the big issues. Artificial Intelligence 47:3–30.

  • Koene, R., and Deca, D. 2013. Editorial: Whole Brain Emulation seeks to Implement a Mind and its General Intelligence through System Identification. Journal of Artificial General Intelligence 4:1–9.

  • Kowalski, R. 1979. Logic for Problem Solving. New York: North Holland.

  • Kuhn, T. S. 1970. The Structure of Scientific Revolutions. Chicago University Press, 2nd edition.

  • Kurzweil, R. 2006. The Singularity Is Near: When Humans Transcend Biology. New York: Penguin Books.

  • Laird, J. E.; Wray, R. E.; Marinier, R. P.; and Langley, P. 2009. Claims and challenges in evaluating human-level intelligent systems. In Goertzel, B.; Hitzler, P.; and Hutter, M., eds., Proceedings of the Second Conference on Artificial General Intelligence, 91–96.

  • Laird, J. E. 2012. The Soar Cognitive Architecture. Cambridge, Massachusetts: MIT Press.

  • Lake, B. M.; Ullman, T. D.; Tenenbaum, J. B.; and Gershman, S. J. 2017. Building machines that learn and think like people. Behavioral and Brain Sciences 40:E253.

  • LeCun, Y.; Bengio, Y.; and Hinton, G. 2015. Deep Learning. Nature 521:436–444.

  • Legg, S., and Hutter, M. 2007. Universal intelligence: a definition of machine intelligence. Minds & Machines 17(4):391–444.

  • Leimeister, J. M. 2010. Collective Intelligence. Business & Information Systems Engineering 2(4):245–248.

  • Luger, G. F. 2008. Artificial Intelligence: Structures and Strategies for Complex Problem Solving. Boston: Pearson, 6th edition.

  • Marcus, G.; Rossi, F.; and Veloso, M. M. 2016. Beyond the Turing Test. AI Magazine 37(1):3–4.

  • Markram, H. 2006. The Blue Brain Project. Nature Reviews Neuroscience 7(2):153–160.

  • Marr, D. 1977. Artificial intelligence: a personal view. Artificial Intelligence 9:37–48.

  • Marr, D. 1982. Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. San Francisco: W. H. Freeman & Co.

  • McCarthy, J.; Minsky, M.; Rochester, N.; and Shannon, C. 1955. A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence. URL: http://www-formal.stanford.edu/jmc/history/dartmouth.html, accessed in May 20, 2019.

  • McCarthy, J. 1988. Mathematical logic in artificial intelligence. Dædalus 117(1):297–311.

  • McCarthy, J. 2007. From here to human-level AI. Artificial Intelligence 171:1174–1182.

  • McCorduck, P. 2004. Machines Who Think: A Personal Inquiry into the History and Prospects of Artificial Intelligence. Natick, MA: A. K. Peters, Ltd., 2nd edition.

  • McCulloch, W. S., and Pitts, W. H. 1943. A logical calculus of ideas immanent in neural activity. Bulletin of Mathematical Biophysics 5:115–133.

  • McDermott, D. 1987. A critique of pure reason. Computational Intelligence 3:151–160.

  • McDermott, D. 2007. Level-headed. Artificial Intelligence 171:1183–1186.

  • Medin, D. L., and Ross, B. H. 1992. Cognitive Psychology. Fort Worth: Harcourt Brace Jovanovich.

  • Michalski, R.; Carbonell, J.; and Mitchell, T., eds. 1984. Machine Learning: An Artificial Intelligence Approach. Springer-Verlag.

  • Minsky, M.; Singh, P.; and Sloman, A. 2004. The St. Thomas common sense symposium: designing architectures for human-level intelligence. AI Magazine 25(2):113–124.

  • Minsky, M. 1983. Introduction to the COMTEX Microfiche Edition of the Early MIT Artificial Intelligence Memos. AI Magazine 4(1):19–22.

  • Minsky, M. 1985a. The Society of Mind. New York: Simon and Schuster.

  • Minsky, M. 1985b. Why intelligent aliens will be intelligible. In Regis, E., ed., Extraterrestrials: Science and Alien Intelligence. Cambridge: Cambridge University Press. 117–128.

  • Minsky, M. 1990. Logical vs. analogical or symbolic vs. connectionist or neat vs. scruffy. In Winston, P. H., and Shellard, S. A., eds., Artificial Intelligence at MIT, Vol. 1: Expanding Frontiers. Cambridge, Massachusetts: MIT Press. 218–243.

  • Minsky, M. 2006. The Emotion Machine: Commonsense Thinking, Artificial Intelligence, and the Future of the Human Mind. Simon & Schuster.

  • Monett, D., and Lewis, C. W. P. 2018. Getting clarity by defining Artificial Intelligence - A Survey. In Müller, V. C., ed., Philosophy and Theory of Artificial Intelligence 2017. Berlin: Springer. 212–214.

  • Newell, A., and Simon, H. A. 1963. GPS, a program that simulates human thought. In Feigenbaum, E. A., and Feldman, J., eds., Computers and Thought. McGraw-Hill, New York. 279–293.

  • Newell, A., and Simon, H. A. 1976. Computer science as empirical inquiry: symbols and search. Communications of the ACM 19(3):113–126.

  • Newell, A. 1990. Unified Theories of Cognition. Cambridge, Massachusetts: Harvard University Press.

  • Nilsson, N. J. 1986. Probabilistic logic. Artificial Intelligence 28:71–87.

  • Nilsson, N. J. 1991. Logic and artificial intelligence. Artificial Intelligence 47:31–56.

  • Nilsson, N. J. 1998. Artificial Intelligence: A New Synthesis. San Francisco: Morgan Kaufmann.

  • Nilsson, N. J. 2005. Human-level artificial intelligence? Be serious! AI Magazine 26(4):68–75.

  • Nilsson, N. J. 2009. The Quest for Artificial Intelligence: A History of Ideas and Achievements. Cambridge: Cambridge University Press.

  • Peirce, C. S. 1931. Collected Papers of Charles Sanders Peirce, volume 2. Cambridge, Massachusetts: Harvard University Press.

  • Piaget, J. 1960. The Psychology of Intelligence. Paterson, New Jersey: Littlefield, Adams & Co.

  • Piaget, J. 1963. The Origins of Intelligence in Children. New York: W.W. Norton & Company, Inc. Translated by M. Cook.

  • Poole, D. L., and Mackworth, A. K. 2017. Artificial Intelligence: Foundations of Computational Agents. Cambridge: Cambridge University Press, 2 edition.

  • Reeke, G. N., and Edelman, G. M. 1988. Real brains and artificial intelligence. Dædalus 117(1):143–173.

  • Regis, E., ed. 1985. Extraterrestrials: Science and alien intelligence.

  • Roland, A., and Shiman, P. 2002. Strategic computing : DARPA and the quest for machine intelligence, 1983-1993. Cambridge, Massachusetts: MIT Press.

  • Rumelhart, D. E., and McClelland, J. L. 1986. PDP models and general issues in cognitive science. In Rumelhart, D. E., and McClelland, J. L., eds., Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1, Foundations. Cambridge, Massachusetts: MIT Press. 110–146.

  • Russell, S., and Norvig, P. 2002. Artificial Intelligence: A Modern Approach. Upper Saddle River, New Jersey: Prentice Hall, 2nd edition.

  • Russell, S., and Norvig, P. 2010. Artificial Intelligence: A Modern Approach. Upper Saddle River, New Jersey: Prentice Hall, 3rd edition.

  • Russell, S., and Wefald, E. H. 1991. Do the Right Thing: Studies in Limited Rationality. Cambridge, Massachusetts: MIT Press.

  • Russell, S. 1997. Rationality and intelligence. Artificial Intelligence 94:57–77.

  • Schank, R. C. 1991. Where is the AI? AI Magazine 12(4):38–49.

  • Searle, J. 1980. Minds, brains, and programs. The Behavioral and Brain Sciences 3:417–424.

  • Shannon, C. E., and Weaver, W. 1949. The mathematical theory of communication. Urbana, IL: The University of Illinois Press.

  • Shapiro, S. C. 1992. Artificial Intelligence. In Shapiro, S. C., ed., Encyclopedia of Artificial Intelligence. New York: John Wiley, 2 edition. 54–57.

  • Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam, V.; Lanctot, M.; Dieleman, S.; Grewe, D.; Nham, J.; Kalchbrenner, N.; Sutskever, I.; Lillicrap, T.; Leach, M.; Kavukcuoglu, K.; Graepel, T.; and Hassabis, D. 2016. Mastering the game of Go with deep neural networks and tree search. Nature 529:484–489.

  • Simon, H. A.; Langley, P. W.; and Bradshaw, G. L. 1981. Scientific Discovery as Problem Solving. Synthese 47:1–27.

  • Simon, H. A. 1957. Models of Man: Social and Rational. New York: John Wiley.

  • Simon, H. A. 1983. Reason in Human Affairs. Stanford, California: Stanford University Press.

  • Solomonoff, R. J. 1964. A formal theory of inductive inference. Part I and II. Information and Control 7(1-2):1–22,224–254.

  • Thórisson, K. R.; Bieger, J.; Li, X.; and Wang, P. 2019. Cumulative Learning. In Proceedings of the Twelfth Conference on Artificial General Intelligence. To appear.

  • Thórisson, K. R. 2012. A New Constructivist AI: From Manual Methods to Self-Constructive Systems. In Wang, P., and Goertzel, B., eds., Theoretical Foundations of Artificial General Intelligence. Paris: Atlantis Press. 145–171.

  • Thórisson, K. R. 2013. Reductio ad Absurdum: On Oversimplification in Computer Science and its Pernicious Effect on Artificial Intelligence Research. AGI-13 workshop on Formalizing Mechanisms for Artificial General Intelligence and Cognition, Beijing, China, July 31st. Retrieved from http://alumni.media.mit.edu/~kris/ftp/Thorisson-ReductioAdAbsurdum-AGI2013.pdf in May 20, 2019.

  • Tomasello, M. 2000. Primate Cognition: Introduction to the Issue. Cognitive Science 24(3):351–361.

  • Turing, A. M. 1950. Computing machinery and intelligence. Mind LIX:433–460.

  • Tversky, A., and Kahneman, D. 1974. Judgment under uncertainty: heuristics and biases. Science 185:1124–1131.

  • von Neumann, J. 1958. The Computer and the Brain. New Haven, CT: Yale University Press.

  • Wang, P., and Goertzel, B. 2007. Introduction: Aspects of artificial general intelligence. In Goertzel, B., and Wang, P., eds., Advance of Artificial General Intelligence. Amsterdam: IOS Press. 1–16.

  • Wang, P., and Hammer, P. 2015. Issues in Temporal and Causal Inference. In Bieger, J.; Goertzel, B.; and Potapov, A., eds., Proceedings of the Eighth Conference on Artificial General Intelligence, 208–217.

  • Wang, P., and Li, X. 2016. Different Conceptions of Learning: Function Approximation vs. Self-Organization. In Steunebrink, B.; Wang, P.; and Goertzel, B., eds., Proceedings of the Ninth Conference on Artificial General Intelligence, 140–149.

  • Wang, P.; Liu, K.; and Dougherty, Q. 2018. Conceptions of Artificial Intelligence and Singularity. Information 9(4).

  • Wang, P. 1994. On the Working Definition of Intelligence. Technical Report 94, Center for Research on Concepts and Cognition, Indiana University, Bloomington, Indiana.

  • Wang, P. 1995. Non-Axiomatic Reasoning System: Exploring the Essence of Intelligence. Ph.D. Dissertation, Indiana University.

  • Wang, P. 1996. Heuristics and normative models of judgment under uncertainty. International Journal of Approximate Reasoning 14(4):221–235.

  • Wang, P. 2001. Wason’s cards: what is wrong. In Chen, L., and Zhuo, Y., eds., Proceedings of the Third International Conference on Cognitive Science, 371–375.

  • Wang, P. 2004a. The limitation of Bayesianism. Artificial Intelligence 158(1):97–106.

  • Wang, P. 2004b. Problem solving with insufficient resources. International Journal of Uncertainty, Fuzziness and Knowledge-based Systems 12(5):673–700.

  • Wang, P. 2004c. Toward a unified artificial intelligence. In Papers from the 2004 AAAI Fall Symposium on Achieving Human-Level Intelligence through Integrated Research and Systems, 83–90.

  • Wang, P. 2005. Experience-grounded semantics: a theory for intelligent systems. Cognitive Systems Research 6(4):282–302.

  • Wang, P. 2006a. Artificial Intelligence: What it is, and what it should be. In Lebiere, C., and Wray, R., eds., Papers from the AAAI Spring Symposium on Between a Rock and a Hard Place: Cognitive Science Principles Meet AI-Hard Problems, 97–102.

  • Wang, P. 2006b. Rigid Flexibility: The Logic of Intelligence. Dordrecht: Springer.

  • Wang, P. 2008. What do you mean by “AI”. In Wang, P.; Goertzel, B.; and Franklin, S., eds., Proceedings of the First Conference on Artificial General Intelligence, 362–373.

  • Wang, P. 2009. Case-by-case problem solving. In Goertzel, B.; Hitzler, P.; and Hutter, M., eds., Proceedings of the Second Conference on Artificial General Intelligence, 180–185.

  • Wang, P. 2011. The Assumptions on Knowledge and Resources in Models of Rationality. International Journal of Machine Consciousness 3(1):193–218.

  • Wang, P. 2012. Theories of Artificial Intelligence – Meta-theoretical considerations. In Wang, P., and Goertzel, B., eds., Theoretical Foundations of Artificial General Intelligence. Paris: Atlantis Press. 305–323.

  • Wang, P. 2013. Non-Axiomatic Logic: A Model of Intelligent Reasoning. Singapore: World Scientific.

  • Wason, P. C., and Johnson-Laird, P. N. 1972. Psychology of Reasoning: Structure and Content. Cambridge, Massachusetts: Harvard University Press.

  • Wiener, N. 1948. Cybernetics, or control and communication in the animal and the machine. New York: John Wiley & Sons, Inc.

OPEN ACCESS

Journal + Issues

Search