Effect of Micro Polypropylene Fibre on the Performance of Fly Ash-Based Geopolymer Concrete

Manoj Rajak 1  and Baboo Rai 1
  • 1 National Institute of Technology, , 800005, Patna, India


Geopolymer offers significant promise to the construction world as a possible alternative to ordinary Portland cement (OPC). Like conventional Portland cement concrete, the matrix brittleness in geopolymer composites can be reduced by introducing suitable fibre reinforcement. A few investigations on fibre reinforced geopolymer composites are available. However there is still a gap to comprehend and enhance their performance. This paper describes the effect of incorporating micro polypropylene fibres on the strength and durability characteristics of geopolymer concrete. The engineering and durability properties like workability, compressive strength, split tensile strength, flexural strength, modulus of elasticity, and sorptivity of geopolymer concrete reinforced with micro polypropylene fibres is presented. The effect of the sulfuric acid attack on Geopolymer Concrete reinforced with micro polypropylene fibres is also discussed. The results show that hydrophobic characteristics of the micro polypropylene fibre led to weak contact with the geopolymer binder and hence weakened the mechanical performance of the fly ash based geopolymer matrix. However significant improvements in durability properties were noted.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Ahmed, S.F.U., and Ronnie, Z. (2017). Ductile behavior of polyethylene fibre reinforced geopolymer composite: MATEC Web of Conferences, DOI: 10.1051/matecconf/20179701047.

  • Al-Tayyib, A.J., Al-Zahrani, M.M., R., and A., Al-Sulaimani, G.J. (1988). Effect of polypropylene fiber reinforcement on the properties of fresh and hardened concrete in the Arabian Gulf environment: Cement and Concrete Research, Vol. 18, No. 4, pp. 561–570.

  • Alhozaimy, A.M., Soroushian, P., and Mirza, F. (1996). Mechanical properties of polypropylene fiber reinforced concrete and the effects of pozzolanic materials: Cement and Concrete Composites, Vol. 18, No. 2, pp. 85–92, DOI: 10.1016/0958-9465(95)00003-8.

  • Alomayri, T., Shaikh, F.U.A., and Low, I.M. (2014). Synthesis and mechanical properties of cotton fabric reinforced geopolymer composites: Composites Part B: Engineering, Vol. 60, pp. 36–42, DOI: 10.1016/j.compositesb.2013.12.036.

  • Alzeer, M., and MacKenzie, K.J.D. (2012). Synthesis and mechanical properties of new fibre-reinforced composites of inorganic polymers with natural wool fibres: Journal of Materials Science, Vol. 47, No. 19, pp. 6958–6965, DOI: 10.1007/s10853-012-6644-3.

  • Assaedi, H., Shaikh, F.U.A., and Low, I.M. (2016). Influence of mixing methods of nano silica on the microstructural and mechanical properties of flax fabric reinforced geopolymer composites: Construction and Building Materials, DOI: 10.1016/j.conbuildmat.2016.07.049.

  • ASTM C 1585 (2013). Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-: ASTM International, pp. 4–9, DOI: 10.1520/C1585-13.2.

  • ASTM C 469 (2014). ASTM C469/C469M-14: Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression: Annual Book of ASTM Standards, DOI: 10.1520/C0469.

  • ASTM C293-02 (2002). Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Center-Point Loading): Annual Book of ASTM Standards, pp. 1–3, DOI: 10.1520/D1635.

  • Aulia, T.B. (2002). “Effects of polypropylene fibers on the properties of high-strength concretes.” Institutes for Massivbau and Baustoffechnologi, University Leipzig, Lacer,, p. 7.

  • Bagherzadeh, R., Pakravan, H.R., Sadeghi, A., Latifi, M., and Merati, A.A. (2012). An Investigation on Adding Polypropylene Fibers to Reinforce Lightweight Cement Composites (LWC): Journal of Engineered Fibers and Fabrics, Vol. 7, No. 4, pp. 13–21.

  • Banthia, N., and Gupta, R. (2006). Influence of polypropylene fiber geometry on plastic shrinkage cracking in concrete: Cement and Concrete Research, Vol. 36, pp. 1263–1267, DOI: 10.1016/j.cemconres.2006.01.010.

  • Bernal, S., De Gutierrez, R., Delvasto, S., and Rodriguez, E. (2010). Performance of an alkali-activated slag concrete reinforced with steel fibers: Construction and Building Materials, Vol. 24, No. 2, pp. 208–214, DOI: 10.1016/j.conbuildmat.2007.10.027.

  • BRE (2000). Constructing the future: Design Build. Davidovits, J. (2005). Geopolymers: Journal of Thermal Analysis, DOI: 10.1007/bf01912193.

  • Davidovits, J. (1991). Geopolymers - Inorganic polymeric new materials: Journal of Thermal Analysis, Vol. 37, No. 8, pp. 1633–1656, DOI: 10.1007/BF01912193.

  • Davidovits, J. (1994). Properties of Geopolymer Cements: First International Conference on Alkaline Cements and Concretes, pp. 131–149.

  • Dias, D.P., and Thaumaturgo, C. (2005). Fracture toughness of geopolymeric concretes reinforced with basalt fibers: Cement and Concrete Composites, Vol. 27, No. 1, pp. 49–54, DOI: 10.1016/j.cemconcomp.2004.02.044.

  • Fanella, D.A., and Naaman, A.E. (1985). Stress-strain Properties of Fiber Reinforced Mortar in Compression: ACI Journal, Vol. 82, No. 4, pp. 475–483, DOI: 10.14359/10359.

  • Fernández-Jiménez, A.M., Palomo, A., and López-Hombrados, C. (2006). Engineering properties of alkali-activated fly ash concrete: ACI Materials Journal, Vol. 103, No. 2, pp. 106–112, DOI: 10.1111/j.1745-4530.2008.00353.x.

  • Gao, X., Yu, Q.L., Yu, R., and Brouwers, H.J.H. (2017). Evaluation of hybrid steel fiber reinforcement in high performance geopolymer composites: Materials and Structures/Materiaux et Constructions, DOI: 10.1617/s11527-017-1030-x.

  • Gong Yi, Sben Rongxi, L.Q. Application of Durafiber to Civil Architectural Engineering: Beijing: Machine Press, pp. 54–66.

  • Hardjito, D., Cheak, C.C., Ho, C., and Ing, L. (2008). Strength and Setting Times of Low Calcium Fly Ash-based Geopolymer Mortar: No. 1990, pp. 3–11.

  • Hardjito, D., and Rangan, B. V (2005). Development and Properties of Low Calcium Fly Ash based Geopolymer Concrete: Research Report GC 1 Faculty of Engineering Curtin University of Technology Perth, Australia.

  • He, P., Jia, D., Lin, T., Wang, M., and Zhou, Y. (2010). Effects of high-temperature heat treatment on the mechanical properties of unidirectional carbon fiber reinforced geopolymer composites: Ceramics International, Vol. 36, No. 4, pp. 1447–1453, DOI: 10.1016/j.ceramint.2010.02.012.

  • Heard, W.F., Basu, P.K., Slawson, T., and Nordendale, N.A. (2011). “Characterization and performance optimization of a cementitious composite for quasi-static and dynamic loads.” Procedia Engineering.

  • Hua Yuan, Liu Ronghua, Z.Y. (1998). Experimental Study on High Performance Concrete Reinforced with Fiber: China Concrete and Cement Products, Vol. 3, pp. 40–43.

  • Hughes B.P., and Fattuhi., N.I. (1976). The Steel Fibre-Reinforced Concrete: Magazine of Concrete Research, Vol. 28, No. 96, pp. 157–161.

  • IS: 516 (1959). Method of test for strength of concrete: Bureau of Indian Standards, New Delhi.

  • IS: 5816 (1999). Splitting Tensile Strength of Concrete Method of Test: Bureau of Indian Standard, New Delhi.

  • IS 10262:2009 (Ed.) Indian standards recommended Guidelines for concrete mix design, 2009th Ed., Bureau of Indian Standards.

  • IS 3812: Part 1 (2003). Pulverized Fuel Ash-Specification: Bureau of Indian Standards.

  • IS 383 (2016). Specification for Coarse and fine aggregates from natural sources for concrete. (IS 383:1970, Ed.): Bureau of Indian Standards.

  • Juenger, M.C.G., Winnefeld, F., Provis, J.L., and Ideker, J.H. (2011). Advances in alternative cementitious binders: Cement and Concrete Research, DOI: 10.1016/j.cemconres.2010.11.012.

  • Kalifa, P., Chéné, G., and Gallé, C. (2001). High-temperature behaviour of HPC with polypropylene fibres - From spalling to microstructure: Cement and Concrete Research, Vol. 31, pp. 1487–1499, DOI: 10.1016/S0008-8846(01)00596-8.

  • Komonen, J., and Penttala, V. (2003). Effects of high temperature on the pore structure and strength of plain and polypropylene fiber reinforced cement pastes: Fire Technology, DOI: 10.1023/A:1021723126005.

  • Kuenzel, C., Vandeperre, L.J., Donatello, S., Boccaccini, A.R., and Cheeseman, C. (2012). Ambient temperature drying shrinkage and cracking in metakaolin-based geopolymers: Journal of the American Ceramic Society, Vol. 95, No. 10, pp. 3270–3277, DOI: 10.1111/j.1551-2916.2012.05380.x.

  • Li Guangwei, Y.Y. (2001). Experimental Study on Properties of Polypropylene Fiber Reinforced Concret: Advances in China Water Conservancy and Hydropower , ,( ): 14-16, Vol. 21, No. 5, pp. 14–16.

  • Li, Z., Zhang, Y., Zhou, X., Behzad Nematollahi, Noushini, A., Hastings, M., Castel, A., Aslani, F., Olivia, M., Nikraz, H., López-Buendía, A.M., Romero-Sánchez, M.D., Climent, V., Guillem, C., Perera, D.S., et al. (2016). A Study of Utilization Aspect of Polypropylene Fibre for Making Value Added Concrete: Construction and Building Materials, Vol. 2, No. 2, pp. 103–106, DOI: 10.15373/22778179/feb2013/37.

  • Litvin, A. (1985). Properties of concrete containing polypropylene fibers. Report to Wire Reinforce Institute.: López-Buendía, A.M., Romero-Sánchez, M.D., Climent, V., and Guillem, C. (2013). Surface treated polypropylene (PP) fibres for reinforced concrete: Cement and Concrete Research, DOI: 10.1016/j.cemconres.2013.08.004.

  • Malhotra, V.M., Carette, G.G., and Bilodeau, A. (1994). Mechanical Properties and Durability of Polypropylene Fibre Reinforced High volume Fly Ash Concrete for Shotcrete Application: ACI Materials Journal, Vol. 91, No. 5, pp. 478–486.

  • Natali, A., Manzi, S., and Bignozzi, M.C. (2011). “Novel fiber-reinforced composite materials based on sustainable geopolymer matrix.” Procedia Engineering,, p. 1124–1131.

  • Nematollahi, B., Sanjayan, J., Qiu, J., and Yang, E.H. (2017). High ductile behavior of a polyethylene fiber-reinforced one-part geopolymer composite: A micromechanics-based investigation: Archives of Civil and Mechanical Engineering, DOI: 10.1016/j.acme.2016.12.005.

  • Nematollahi, B., Sanjayan, J., and Shaikh, F.U.A. (2015). Synthesis of heat and ambient cured one-part geopolymer mixes with different grades of sodium silicate: Ceramics International, Vol. 41, No. 4, pp. 5696–5704, DOI: 10.1016/j.ceramint.2014.12.154.

  • Olivia, M., and Nikraz, H. (2012). Properties of fly ash geopolymer concrete designed by Taguchi method: Materials and Design, Vol. 36, No. January 2011, pp. 191–198, DOI: 10.1016/j.matdes.2011.10.036.

  • Parviz Soroushian and Jer-Wen Hsu, A.K. (1992). Mechanical Properties of Concrete Materials Reinforced with Polypropylene or Polyethylene Fibers: ACI Materials Journal, Vol. 89, No. 6, DOI: 10.14359/4018.

  • Perera, D.S., Uchida, O., Vance, E.R., and Finnie, K.S. (2007). Influence of curing schedule on the integrity of geopolymers: Journal of Materials Science, Vol. 42, No. 9, pp. 3099–3106, DOI: 10.1007/s10853-006-0533-6.

  • Puertas, F., Amat, T., Fernández-Jiménez, A., and Vázquez, T. (2003). Mechanical and durable behaviour of alkaline cement mortars reinforced with polypropylene fibres: Cement and Concrete Research, Vol. 33, No. 12, pp. 2031–2036, DOI: 10.1016/S0008-8846(03)00222-9.

  • Rai, B., Roy, L.B., and Rajjak, M. (2018). A statistical investigation of different parameters influencing compressive strength of fly ash induced geopolymer concrete: Structural Concrete, DOI: 10.1002/suco.201700193.

  • Ranjbar, N., Mehrali, M., Behnia, A., Javadi Pordsari, A., Mehrali, M., Alengaram, U.J., and Jumaat, M.Z. (2016a). A Comprehensive Study of the Polypropylene Fiber Reinforced Fly Ash Based Geopolymer: PloS one, Vol. 11, No. 1, p. e0147546, DOI: 10.1371/journal.pone.0147546.

  • Ranjbar, N., Mehrali, M., Mehrali, M., Alengaram, U.J., and Jumaat, M.Z. (2015). Graphene nanoplatelet-fly ash based geopolymer composites: Cement and Concrete Research, Vol. 76, pp. 222–231, DOI: 10.1016/j.cemconres.2015.06.003.

  • Ranjbar, N., Mehrali, M., Mehrali, M., Alengaram, U.J., and Jumaat, M.Z. (2016b). High tensile strength fly ash based geopolymer composite using copper coated micro steel fiber: Construction and Building Materials, DOI: 10.1016/j.conbuildmat.2016.02.228.

  • Ranjbar, N., Talebian, S., Mehrali, M., Kuenzel, C., Cornelis Metselaar, H.S., and Jumaat, M.Z. (2016c). Mechanisms of interfacial bond in steel and polypropylene fiber reinforced geopolymer composites: Composites Science and Technology, Vol. 122, pp. 73–81, DOI: 10.1016/j.compscitech.2015.11.009.

  • Reed, M., Lokuge, W., and Karunasena, W. (2014). Fibre-reinforced geopolymer concrete with ambient curing for in situ applications: Journal of Materials Science, Vol. 49, No. 12, pp. 4297–4304, DOI: 10.1007/s10853-014-8125-3.

  • Richardson, A.E. (2006). Compressive strength of concrete with polypropylene fibre additions: Structural Survey, Vol. 24, No. 2, pp. 138–153, DOI: 10.1108/02630800610666673.

  • Ridtirud, C., Chindaprasirt, P., and Pimraksa, K. (2011). Factors affecting the shrinkage of fly ash geopolymers: International Journal of Minerals, Metallurgy and Materials, Vol. 18, No. 1, pp. 100–104, DOI: 10.1007/s12613-011-0407-z.

  • Shaikh, F.U.A. (2013a). Deflection hardening behaviour of short fibre reinforced fly ash based geopolymer composites: Materials and Design, Vol. 50, pp. 674–682, DOI: 10.1016/j.matdes.2013.03.063.

  • Shaikh, F.U.A. (2013b). Review of mechanical properties of short fibre reinforced geopolymer composites: Construction and Building Materials, Vol. 43, pp. 37–49, DOI: 10.1016/j.conbuildmat.2013.01.026.

  • Sofi, M., van Deventer, J.S.J., Mendis, P.A., and Lukey, G.C. (2007). Engineering properties of inorganic polymer concretes (IPCs): Cement and Concrete Research, Vol. 37, No. 2, pp. 251–257, DOI: 10.1016/j.cemconres.2006.10.008.

  • Song, P.S., and Hwang, S. (2004). Mechanical properties of high-strength steel fiber-reinforced concrete: Construction and Building Materials, Vol. 18, No. 9, pp. 669–673, DOI: 10.1016/j.conbuildmat.2004.04.027.

  • Tomkins, B.W. (2011). Chemical Resistance of Geopolymer Concrete Against H2SO4 and NaOH, p. 110.

  • Urbanova, M., Andertova, J., Brus, J., Vorel, J., Koloušek, D., and Hulinsky, V. (2007). Preparation, structure and hydrothermal stability of alternative (sodium silicate-free) geopolymers: Journal of Materials Science, Vol. 42, No. 22, pp. 9267–9275, DOI: 10.1007/s10853-007-1910-5.

  • Wallah, S.E., and Rangan, B. V (2006). Low-Cakcium Fly Ash Based.

  • Yost, J.R., Radlińska, A., Ernst, S., and Salera, M. (2013). Structural behavior of alkali activated fly ash concrete. Part. Mixture design, material properties and sample fabrication: Materials and Structures/Materiaux et Constructions, DOI: 10.1617/s11527-012-9919-x.

  • Yunsheng, Z., Wei, S., Zongjin, L., Xiangming, Z., Eddie, and Chungkong, C. (2008). Impact properties of geopolymer based extrudates incorporated with fly ash and PVA short fiber: Construction and Building Materials, Vol. 22, No. 3, pp. 370–383, DOI: 10.1016/j.conbuildmat.2006.08.006.

  • Zhang, Z., Yao, X., Zhu, H., Hua, S., and Chen, Y. (2009). Preparation and mechanical properties of polypropylene fiber reinforced calcined kaolin-fly ash based geopolymer: Journal of Central South University of Technology, Vol. 16, pp. 49–52, DOI: 10.1007/s11771-009-0008-4.

  • Zollo, R.F. Collated fibrillated polypropylene fibers in FRC, in G.C. Hoff (ed.) Fiber Reinforced Concrete: American Concrete Institute, Farmington Hills, MI, Vol. SP-81, pp. 397–409.

  • Zuhua, Z., Xiao, Y., Huajun, Z., and Yue, C. (2009). Role of water in the synthesis of calcined kaolin-based geopolymer: Applied Clay Science, Vol. 43, No. 2, pp. 218–223, DOI: 10.1016/j.clay.2008.09.003.


Journal + Issues