Effect of Micro Polypropylene Fibre on the Performance of Fly Ash-Based Geopolymer Concrete

Open access

Abstract

Geopolymer offers significant promise to the construction world as a possible alternative to ordinary Portland cement (OPC). Like conventional Portland cement concrete, the matrix brittleness in geopolymer composites can be reduced by introducing suitable fibre reinforcement. A few investigations on fibre reinforced geopolymer composites are available. However there is still a gap to comprehend and enhance their performance. This paper describes the effect of incorporating micro polypropylene fibres on the strength and durability characteristics of geopolymer concrete. The engineering and durability properties like workability, compressive strength, split tensile strength, flexural strength, modulus of elasticity, and sorptivity of geopolymer concrete reinforced with micro polypropylene fibres is presented. The effect of the sulfuric acid attack on Geopolymer Concrete reinforced with micro polypropylene fibres is also discussed. The results show that hydrophobic characteristics of the micro polypropylene fibre led to weak contact with the geopolymer binder and hence weakened the mechanical performance of the fly ash based geopolymer matrix. However significant improvements in durability properties were noted.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Ahmed S.F.U. and Ronnie Z. (2017). Ductile behavior of polyethylene fibre reinforced geopolymer composite: MATEC Web of Conferences DOI: 10.1051/matecconf/20179701047.

  • Al-Tayyib A.J. Al-Zahrani M.M. R. and A. Al-Sulaimani G.J. (1988). Effect of polypropylene fiber reinforcement on the properties of fresh and hardened concrete in the Arabian Gulf environment: Cement and Concrete Research Vol. 18 No. 4 pp. 561–570.

  • Alhozaimy A.M. Soroushian P. and Mirza F. (1996). Mechanical properties of polypropylene fiber reinforced concrete and the effects of pozzolanic materials: Cement and Concrete Composites Vol. 18 No. 2 pp. 85–92 DOI: 10.1016/0958-9465(95)00003-8.

  • Alomayri T. Shaikh F.U.A. and Low I.M. (2014). Synthesis and mechanical properties of cotton fabric reinforced geopolymer composites: Composites Part B: Engineering Vol. 60 pp. 36–42 DOI: 10.1016/j.compositesb.2013.12.036.

  • Alzeer M. and MacKenzie K.J.D. (2012). Synthesis and mechanical properties of new fibre-reinforced composites of inorganic polymers with natural wool fibres: Journal of Materials Science Vol. 47 No. 19 pp. 6958–6965 DOI: 10.1007/s10853-012-6644-3.

  • Assaedi H. Shaikh F.U.A. and Low I.M. (2016). Influence of mixing methods of nano silica on the microstructural and mechanical properties of flax fabric reinforced geopolymer composites: Construction and Building Materials DOI: 10.1016/j.conbuildmat.2016.07.049.

  • ASTM C 1585 (2013). Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-: ASTM International pp. 4–9 DOI: 10.1520/C1585-13.2.

  • ASTM C 469 (2014). ASTM C469/C469M-14: Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression: Annual Book of ASTM Standards DOI: 10.1520/C0469.

  • ASTM C293-02 (2002). Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Center-Point Loading): Annual Book of ASTM Standards pp. 1–3 DOI: 10.1520/D1635.

  • Aulia T.B. (2002). “Effects of polypropylene fibers on the properties of high-strength concretes.” Institutes for Massivbau and Baustoffechnologi University Leipzig Lacer p. 7.

  • Bagherzadeh R. Pakravan H.R. Sadeghi A. Latifi M. and Merati A.A. (2012). An Investigation on Adding Polypropylene Fibers to Reinforce Lightweight Cement Composites (LWC): Journal of Engineered Fibers and Fabrics Vol. 7 No. 4 pp. 13–21.

  • Banthia N. and Gupta R. (2006). Influence of polypropylene fiber geometry on plastic shrinkage cracking in concrete: Cement and Concrete Research Vol. 36 pp. 1263–1267 DOI: 10.1016/j.cemconres.2006.01.010.

  • Bernal S. De Gutierrez R. Delvasto S. and Rodriguez E. (2010). Performance of an alkali-activated slag concrete reinforced with steel fibers: Construction and Building Materials Vol. 24 No. 2 pp. 208–214 DOI: 10.1016/j.conbuildmat.2007.10.027.

  • BRE (2000). Constructing the future: Design Build. Davidovits J. (2005). Geopolymers: Journal of Thermal Analysis DOI: 10.1007/bf01912193.

  • Davidovits J. (1991). Geopolymers - Inorganic polymeric new materials: Journal of Thermal Analysis Vol. 37 No. 8 pp. 1633–1656 DOI: 10.1007/BF01912193.

  • Davidovits J. (1994). Properties of Geopolymer Cements: First International Conference on Alkaline Cements and Concretes pp. 131–149.

  • Dias D.P. and Thaumaturgo C. (2005). Fracture toughness of geopolymeric concretes reinforced with basalt fibers: Cement and Concrete Composites Vol. 27 No. 1 pp. 49–54 DOI: 10.1016/j.cemconcomp.2004.02.044.

  • Fanella D.A. and Naaman A.E. (1985). Stress-strain Properties of Fiber Reinforced Mortar in Compression: ACI Journal Vol. 82 No. 4 pp. 475–483 DOI: 10.14359/10359.

  • Fernández-Jiménez A.M. Palomo A. and López-Hombrados C. (2006). Engineering properties of alkali-activated fly ash concrete: ACI Materials Journal Vol. 103 No. 2 pp. 106–112 DOI: 10.1111/j.1745-4530.2008.00353.x.

  • Gao X. Yu Q.L. Yu R. and Brouwers H.J.H. (2017). Evaluation of hybrid steel fiber reinforcement in high performance geopolymer composites: Materials and Structures/Materiaux et Constructions DOI: 10.1617/s11527-017-1030-x.

  • Gong Yi Sben Rongxi L.Q. Application of Durafiber to Civil Architectural Engineering: Beijing: Machine Press pp. 54–66.

  • Hardjito D. Cheak C.C. Ho C. and Ing L. (2008). Strength and Setting Times of Low Calcium Fly Ash-based Geopolymer Mortar: No. 1990 pp. 3–11.

  • Hardjito D. and Rangan B. V (2005). Development and Properties of Low Calcium Fly Ash based Geopolymer Concrete: Research Report GC 1 Faculty of Engineering Curtin University of Technology Perth Australia.

  • He P. Jia D. Lin T. Wang M. and Zhou Y. (2010). Effects of high-temperature heat treatment on the mechanical properties of unidirectional carbon fiber reinforced geopolymer composites: Ceramics International Vol. 36 No. 4 pp. 1447–1453 DOI: 10.1016/j.ceramint.2010.02.012.

  • Heard W.F. Basu P.K. Slawson T. and Nordendale N.A. (2011). “Characterization and performance optimization of a cementitious composite for quasi-static and dynamic loads.” Procedia Engineering.

  • Hua Yuan Liu Ronghua Z.Y. (1998). Experimental Study on High Performance Concrete Reinforced with Fiber: China Concrete and Cement Products Vol. 3 pp. 40–43.

  • Hughes B.P. and Fattuhi. N.I. (1976). The Steel Fibre-Reinforced Concrete: Magazine of Concrete Research Vol. 28 No. 96 pp. 157–161.

  • IS: 516 (1959). Method of test for strength of concrete: Bureau of Indian Standards New Delhi.

  • IS: 5816 (1999). Splitting Tensile Strength of Concrete Method of Test: Bureau of Indian Standard New Delhi.

  • IS 10262:2009 (Ed.) Indian standards recommended Guidelines for concrete mix design 2009th Ed. Bureau of Indian Standards.

  • IS 3812: Part 1 (2003). Pulverized Fuel Ash-Specification: Bureau of Indian Standards.

  • IS 383 (2016). Specification for Coarse and fine aggregates from natural sources for concrete. (IS 383:1970 Ed.): Bureau of Indian Standards.

  • Juenger M.C.G. Winnefeld F. Provis J.L. and Ideker J.H. (2011). Advances in alternative cementitious binders: Cement and Concrete Research DOI: 10.1016/j.cemconres.2010.11.012.

  • Kalifa P. Chéné G. and Gallé C. (2001). High-temperature behaviour of HPC with polypropylene fibres - From spalling to microstructure: Cement and Concrete Research Vol. 31 pp. 1487–1499 DOI: 10.1016/S0008-8846(01)00596-8.

  • Komonen J. and Penttala V. (2003). Effects of high temperature on the pore structure and strength of plain and polypropylene fiber reinforced cement pastes: Fire Technology DOI: 10.1023/A:1021723126005.

  • Kuenzel C. Vandeperre L.J. Donatello S. Boccaccini A.R. and Cheeseman C. (2012). Ambient temperature drying shrinkage and cracking in metakaolin-based geopolymers: Journal of the American Ceramic Society Vol. 95 No. 10 pp. 3270–3277 DOI: 10.1111/j.1551-2916.2012.05380.x.

  • Li Guangwei Y.Y. (2001). Experimental Study on Properties of Polypropylene Fiber Reinforced Concret: Advances in China Water Conservancy and Hydropower ( ): 14-16 Vol. 21 No. 5 pp. 14–16.

  • Li Z. Zhang Y. Zhou X. Behzad Nematollahi Noushini A. Hastings M. Castel A. Aslani F. Olivia M. Nikraz H. López-Buendía A.M. Romero-Sánchez M.D. Climent V. Guillem C. Perera D.S. et al. (2016). A Study of Utilization Aspect of Polypropylene Fibre for Making Value Added Concrete: Construction and Building Materials Vol. 2 No. 2 pp. 103–106 DOI: 10.15373/22778179/feb2013/37.

  • Litvin A. (1985). Properties of concrete containing polypropylene fibers. Report to Wire Reinforce Institute.: López-Buendía A.M. Romero-Sánchez M.D. Climent V. and Guillem C. (2013). Surface treated polypropylene (PP) fibres for reinforced concrete: Cement and Concrete Research DOI: 10.1016/j.cemconres.2013.08.004.

  • Malhotra V.M. Carette G.G. and Bilodeau A. (1994). Mechanical Properties and Durability of Polypropylene Fibre Reinforced High volume Fly Ash Concrete for Shotcrete Application: ACI Materials Journal Vol. 91 No. 5 pp. 478–486.

  • Natali A. Manzi S. and Bignozzi M.C. (2011). “Novel fiber-reinforced composite materials based on sustainable geopolymer matrix.” Procedia Engineering p. 1124–1131.

  • Nematollahi B. Sanjayan J. Qiu J. and Yang E.H. (2017). High ductile behavior of a polyethylene fiber-reinforced one-part geopolymer composite: A micromechanics-based investigation: Archives of Civil and Mechanical Engineering DOI: 10.1016/j.acme.2016.12.005.

  • Nematollahi B. Sanjayan J. and Shaikh F.U.A. (2015). Synthesis of heat and ambient cured one-part geopolymer mixes with different grades of sodium silicate: Ceramics International Vol. 41 No. 4 pp. 5696–5704 DOI: 10.1016/j.ceramint.2014.12.154.

  • Olivia M. and Nikraz H. (2012). Properties of fly ash geopolymer concrete designed by Taguchi method: Materials and Design Vol. 36 No. January 2011 pp. 191–198 DOI: 10.1016/j.matdes.2011.10.036.

  • Parviz Soroushian and Jer-Wen Hsu A.K. (1992). Mechanical Properties of Concrete Materials Reinforced with Polypropylene or Polyethylene Fibers: ACI Materials Journal Vol. 89 No. 6 DOI: 10.14359/4018.

  • Perera D.S. Uchida O. Vance E.R. and Finnie K.S. (2007). Influence of curing schedule on the integrity of geopolymers: Journal of Materials Science Vol. 42 No. 9 pp. 3099–3106 DOI: 10.1007/s10853-006-0533-6.

  • Puertas F. Amat T. Fernández-Jiménez A. and Vázquez T. (2003). Mechanical and durable behaviour of alkaline cement mortars reinforced with polypropylene fibres: Cement and Concrete Research Vol. 33 No. 12 pp. 2031–2036 DOI: 10.1016/S0008-8846(03)00222-9.

  • Rai B. Roy L.B. and Rajjak M. (2018). A statistical investigation of different parameters influencing compressive strength of fly ash induced geopolymer concrete: Structural Concrete DOI: 10.1002/suco.201700193.

  • Ranjbar N. Mehrali M. Behnia A. Javadi Pordsari A. Mehrali M. Alengaram U.J. and Jumaat M.Z. (2016a). A Comprehensive Study of the Polypropylene Fiber Reinforced Fly Ash Based Geopolymer: PloS one Vol. 11 No. 1 p. e0147546 DOI: 10.1371/journal.pone.0147546.

  • Ranjbar N. Mehrali M. Mehrali M. Alengaram U.J. and Jumaat M.Z. (2015). Graphene nanoplatelet-fly ash based geopolymer composites: Cement and Concrete Research Vol. 76 pp. 222–231 DOI: 10.1016/j.cemconres.2015.06.003.

  • Ranjbar N. Mehrali M. Mehrali M. Alengaram U.J. and Jumaat M.Z. (2016b). High tensile strength fly ash based geopolymer composite using copper coated micro steel fiber: Construction and Building Materials DOI: 10.1016/j.conbuildmat.2016.02.228.

  • Ranjbar N. Talebian S. Mehrali M. Kuenzel C. Cornelis Metselaar H.S. and Jumaat M.Z. (2016c). Mechanisms of interfacial bond in steel and polypropylene fiber reinforced geopolymer composites: Composites Science and Technology Vol. 122 pp. 73–81 DOI: 10.1016/j.compscitech.2015.11.009.

  • Reed M. Lokuge W. and Karunasena W. (2014). Fibre-reinforced geopolymer concrete with ambient curing for in situ applications: Journal of Materials Science Vol. 49 No. 12 pp. 4297–4304 DOI: 10.1007/s10853-014-8125-3.

  • Richardson A.E. (2006). Compressive strength of concrete with polypropylene fibre additions: Structural Survey Vol. 24 No. 2 pp. 138–153 DOI: 10.1108/02630800610666673.

  • Ridtirud C. Chindaprasirt P. and Pimraksa K. (2011). Factors affecting the shrinkage of fly ash geopolymers: International Journal of Minerals Metallurgy and Materials Vol. 18 No. 1 pp. 100–104 DOI: 10.1007/s12613-011-0407-z.

  • Shaikh F.U.A. (2013a). Deflection hardening behaviour of short fibre reinforced fly ash based geopolymer composites: Materials and Design Vol. 50 pp. 674–682 DOI: 10.1016/j.matdes.2013.03.063.

  • Shaikh F.U.A. (2013b). Review of mechanical properties of short fibre reinforced geopolymer composites: Construction and Building Materials Vol. 43 pp. 37–49 DOI: 10.1016/j.conbuildmat.2013.01.026.

  • Sofi M. van Deventer J.S.J. Mendis P.A. and Lukey G.C. (2007). Engineering properties of inorganic polymer concretes (IPCs): Cement and Concrete Research Vol. 37 No. 2 pp. 251–257 DOI: 10.1016/j.cemconres.2006.10.008.

  • Song P.S. and Hwang S. (2004). Mechanical properties of high-strength steel fiber-reinforced concrete: Construction and Building Materials Vol. 18 No. 9 pp. 669–673 DOI: 10.1016/j.conbuildmat.2004.04.027.

  • Tomkins B.W. (2011). Chemical Resistance of Geopolymer Concrete Against H2SO4 and NaOH p. 110.

  • Urbanova M. Andertova J. Brus J. Vorel J. Koloušek D. and Hulinsky V. (2007). Preparation structure and hydrothermal stability of alternative (sodium silicate-free) geopolymers: Journal of Materials Science Vol. 42 No. 22 pp. 9267–9275 DOI: 10.1007/s10853-007-1910-5.

  • Wallah S.E. and Rangan B. V (2006). Low-Cakcium Fly Ash Based.

  • Yost J.R. Radlińska A. Ernst S. and Salera M. (2013). Structural behavior of alkali activated fly ash concrete. Part. Mixture design material properties and sample fabrication: Materials and Structures/Materiaux et Constructions DOI: 10.1617/s11527-012-9919-x.

  • Yunsheng Z. Wei S. Zongjin L. Xiangming Z. Eddie and Chungkong C. (2008). Impact properties of geopolymer based extrudates incorporated with fly ash and PVA short fiber: Construction and Building Materials Vol. 22 No. 3 pp. 370–383 DOI: 10.1016/j.conbuildmat.2006.08.006.

  • Zhang Z. Yao X. Zhu H. Hua S. and Chen Y. (2009). Preparation and mechanical properties of polypropylene fiber reinforced calcined kaolin-fly ash based geopolymer: Journal of Central South University of Technology Vol. 16 pp. 49–52 DOI: 10.1007/s11771-009-0008-4.

  • Zollo R.F. Collated fibrillated polypropylene fibers in FRC in G.C. Hoff (ed.) Fiber Reinforced Concrete: American Concrete Institute Farmington Hills MI Vol. SP-81 pp. 397–409.

  • Zuhua Z. Xiao Y. Huajun Z. and Yue C. (2009). Role of water in the synthesis of calcined kaolin-based geopolymer: Applied Clay Science Vol. 43 No. 2 pp. 218–223 DOI: 10.1016/j.clay.2008.09.003.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 71 71 31
PDF Downloads 59 59 19