Cite

We have seen in the previous paper that in the case of resistance elements made of steel, at least in this case study, the structure’s response to strains, in this case sunshine, is uncertain, may or may not be linear. The analysis continues for the four characteristic months of 2013, respectively the second month (February), the fifth (May), the eighth (August) and the event (November), covering the four seasons and approximately the entire range of temperatures to which the resistance elements of the bridge are subject to along a calendar year - case study Incheon Grand Bridge, Seoul, South Korea. The number of data pairs recorded, as we have noted, every 15 minutes, is initially 11,616, being difficult to process. Some software (e.g. Table Curve 2D) can work with a maximum of 3000 data pairs. In what follows we will examine the behaviour of a reinforced concrete element of the North Bridge Gap front line and we will build a mathematical model of its behaviour to sunshine, from the input data, one recording every hours, thus reducing the number of measurements to 2904. The aim is to obtain a mathematical model with a correlation coefficient above 0.9, which is also verified and validated. This model will allow us to calculate the expected position of the sensor mounted on the resistance element for a certain temperature, the degree of confidence of the result, the interval of residual values. Because the history of the evolution of temperatures for each moment analyzed is different it produces different results, but ones that fit the specified regressive mathematical model.

eISSN:
2284-7197
ISSN:
2247-3769
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other, Electrical Engineering, Energy Engineering, Geosciences, Geodesy