Scheduling And Simulation Of VLBI Measurements For The Determination Of Earth Orientation Parameters

Open access

Abstract

The article aims to present the results obtain from the scheduling and simulation of VLBI measurements in October 2010 for a period of three days for 24 hour continuous observations. To be sure that we will obtain good VLBI observation we have to do an optimization of the network. This can be done quite accurately by using the new modules that are part of the VLBI processing software’s, the modules scheduling and simulation. This can be considered the first step in preparation of the VLBI experiment. Very Long Baseline Interferometry (VLBI) it is a primary space-geodetic technique that it is able to determine precise coordinates on the Earth, by monitoring the variable of Earth orientation parameters (EOP) with high precision. Also Very Long Baseline Interferometry plays an important role for determination of celestial and terrestrial reference frame. It is also a technique that each year is more developed form a software and hardware point of view. To obtain the scans we used a set of eight different VLBI antennas and as a source we used different quasars. In the scheduling we used the source based strategy contrary to the station based approach and the radio sources where from updated catalogues according to the requirements of the VLBI2010 system, which means that we are able to obtain a best coverage of the celestial sphere. The results show that scheduling and simulation are very good tools in preparing real VLBI experiments.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Böhm J S Böhm T Nilsson A Pany L Plank H Spicakova K Teke and H Schuh. 2012. “The New Vienna VLBI Software VieVS.” In Geodesy for Planet Earth SE - 126 edited by Steve Kenyon Maria Christina Pacino and Urs Marti 136:1007–11. International Association of Geodesy Symposia. Springer Berlin Heidelberg. doi:10.1007/978-3-642-20338-1_126.

  • Charlot P. 2004. “The ICRF: 2010 and beyond.” In Procceedings. of International VLBI Service for Geodesy and Astrometry 2004 General Meeting NASA/CP-2004-212255 12–21.

  • Charlot P. 1990. “Radio-Source Structure in Astrometric and Geodetic Very Long Baseline Interferometry” April. http://ntrs.nasa.gov/search.jsp?R=19900041494.

  • Fey Alan and Patrick Charlot. 2000. “VLBA Observations of Radio Reference Frame Sources. III. Astrometric Suitability of an Additional 225 Sources.” The Astrophysical Journal Supplement Series 128 (1): 17–83. doi:10.1086/313382.

  • Fey Alan L. and Patrick Charlot. 1997. “VLBA Observations of Radio Reference Frame Sources. II. Astrometric Suitability Based on Observed Structure.” The Astrophysical Journal Supplement Series 111 (1): 95–142. doi:10.1086/313017.

  • Gipson John Daniel MacMillan and Leonid Petrov. 2008. “Improved Estimation in VLBI through Better Modeling and Analysis.” Measuring the Future. http://adsabs.harvard.edu/abs/2008mefu.conf..157G.

  • Heinkelmann Robert. 2013. Geodetic Sciences - Observations Modeling and Applications. Edited by Shuanggen Jin. InTech. doi:10.5772/3439.

  • Niell A A Whitney B Petrachenko W Schlüter N Vandenberg H Hase Y Koyama C Ma H Schuh and G Tuccari. 2005. VLBI2010: Current and Future Requirements for Geodetic VLBI System.

  • Nilsson Tobias Robert Heinkelmann Maria Karbon Virginia Raposo-Pulido Benedikt Soja and Harald Schuh. 2014. “Earth Orientation Parameters Estimated from VLBI during the CONT11 Campaign.” Journal of Geodesy 88 (5): 491–502. doi:10.1007/s00190-014-0700-5.

  • Petrachenko W. T. H. Schuh A. E. Niell D. Behrend and B. E. Corey. 2010. “VLBI2010: Next Generation VLBI System for Geodesy and Astrometry.” American Geophysical Union. http://adsabs.harvard.edu/abs/2010AGUFM.G14B..06P.

  • Petrachenko B. A. Niell D. Behrend B. Corey J. Boehm P. Charlot A. Collioud et al. 2009. “Design Aspects of the VLBI2010 System. Progress Report of the IVS VLBI2010 Committee June 2009.” NASA/TM-2009-214180 2009 62 Pages -1 (June)

  • Plag Hans-Peter and Michael Pearlman. 2009. Global Geodetic Observing System: Meeting the Requirements of a Global Society on a Changing Planet in 2020.

  • Schuh H. and D. Behrend. 2012. “VLBI: A Fascinating Technique for Geodesy and Astrometry.” Journal of Geodynamics 61 (October): 68–80. doi:10.1016/j.jog.2012.07.007.

  • Schuh Harald and Johannes Böhm. 2013. “Very Long Baseline Interferometry for Geodesy and Astrometry.” In Sciences of Geodesy - II SE - 7 edited by Guochang Xu 339–76. Springer Berlin Heidelberg. doi:10.1007/978-3-642-28000-9_7.

  • Shabala Stanislav S. Jonathan G. Rogers Jamie N. McCallum Oleg A. Titov Jay Blanchard James E. J. Lovell and Christopher S. Watson. 2014. “The Effects of Frequency-Dependent Quasar Variability on the Celestial Reference Frame.” Journal of Geodesy 88 (6): 575–86. doi:10.1007/s00190-014-0706-z.

  • Steufmehl H. 1991. “AUTOSKED—automatic Creation of Optimized VLBI Observing Schedules.” In Proceedings of the 8th Working Meeting on European VLBI for Geodesy and Astrometry IV – 23 – IV – 29.

  • Sun Jing Johannes Böhm Tobias Nilsson Hana Krásná Sigrid Böhm and Harald Schuh. 2014. “New VLBI2010 Scheduling Strategies and Implications on the Terrestrial Reference Frames.” Journal of Geodesy 88 (5): 449–61. doi:10.1007/s00190-014-0697-9.

  • Teke Kamil Johannes Böhm Hana Spicakova Andrea Pany Lucia Plank Harald Schuh and Emine Tanir. 2009. Piecewise Linear Offsets for VLBI Parameter Estimation. na.

  • Turner Stuart ed. 1987. Applied Geodesy. Vol. 12. Lecture Notes in Earth Sciences. Berlin/Heidelberg: Springer-Verlag. doi:10.1007/BFb0010105.

  • Wresnik Joerg Johannes Boehm Andrea Pany and Harald Schuh. 2008. VLBI2010 Simulations at IGG Vienna. na.

Search
Journal information
Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 141 63 2
PDF Downloads 76 40 0