Supporting Problem Solving Process of Expert System Architecture in Database Administration

Open access

Abstract

The present article describes the supporting problem solving process of expert system architecture in database administration. The proposed expert system produces solutions using input data from users, also recommends a better solution according to the defined task, restrictions and given optimisation goal. To generate solutions, an expert system uses the combined method to produce a solution. The present article also describes a problem domain, where an expert system could be used. In the implementation section, system design and implementation are also introduced. Conclusion section comprises further research and development steps.

References

  • [1] T. Hemdi, Vvedenie v issledovanie operacij, 6-e izdanie. Moskva: Izdateljskij dom, 2001.

  • [2] “The protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing”, Regulation (EU) 2016/679 of the european parliament and of the council of 27 April 2016 on Directive 95/46/EC (General Data Protection Regulation).

  • [3] V. Marahovskij, L.Rozenblum, A. Jakovlev, Modelirovanie paralleljnyh processov. Seti Petri, Kurs dlja sistemnyh arhitectorov, programmistov, sistemnyh analitikov, projektirovschikov sloznyh sistem upravlenija, Sankt-Peterburg: Professionaljnaja literatura, IT-Podgotovka, 400 s., 2014.

  • [4] Dj. Piterson, Teorija setej Petri i modelirovanie sistem. Moskva: Mir, 264 s., 1984.

  • [5] A. Geller, B. Spendolini, Oracle Application Express: Build Powerful Data-Centric Web Apps with APEX. Oracle Press, 2017.

  • [6] J. Greenberg, Oracle Database Object-Relational Developer's Guide 12c Release 1. Oracle corp., 2014.

  • [7] A. Kaulins and A. Borisovs, “Building Ontology from Relational Database”, Information Technology and Management Science, vol. 17, pp. 45-49, 2014. https://doi.org/10.1515/itms-2014-0006

  • [8] S. Staab and R. Studer, “Handbook on Ontologies”, International Handbooks on Information Systems, Springer Science and Business Media, 2013.

  • [9] B. Bennett, C. Fellbaum, “Formal Ontology in Information Systems”, Proceedings of the Fourth International Conference FOIS 2006. IOS Press, 2006.

  • [10] C. Murray, Oracle Spatial and Graph Property Graph Developer’s Guide, Release 12.2., 243 p., 2017.

  • [11] “Oracle Spatial and Graph Property Graph Java API Reference,” 2017. [Online]. Aviable: http://docs.oracle.com/database/122/SPGJV/toc.htm

  • [12] Oracle® Database New Features Guide 12c Release 2 (12.2), E49697-19, Copyright © 2015, Oracle and/or its affiliates, 2017.

  • [13] T. Das, “Оracle® Database Java Developer's Guide 12c Release 2 (12.2)”, E50047-11, Copyright © Oracle and/or its affiliates, 308 p., 2017.

  • [14] M. Gen and R. Cheng, Genetic algorithms and engineering design. John Wiley & Sons, 411 p., 1997.

  • [15] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford university press, 2005.

  • [16] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning. MIT Press, 2016.

  • [17] C. Szepesvari, Algorithms for Reinforcement Learning. Morgan and Claypool, 2010.

Information Technology and Management Science

The Journal of Riga Technical University

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 50 50 37
PDF Downloads 22 22 16