Simulation-Based Approach to Operating Costs Analysis of Freight Trucking

Open access


The article is devoted to the problem of costs uncertainty in road freight transportation services. The article introduces the statistical approach, based on Monte Carlo simulation on spreadsheets, to the analysis of operating costs. The developed model gives an opportunity to estimate operating freight trucking costs under different configuration of cost factors. Important conclusions can be made after running simulations regarding sensitivity to different factors, optimal decisions and variability of operating costs.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Road Freight Transport Vademecum 2010 Report European Commission DG for Mobility and Transport Unit D.3 – Land transport September 2011. [Online]. Available: [Accessed: Apr. 1 2015].

  • [2] Nozaru izpēte profesionālajai izglītībai – 2. daļa: transporta un loģistikas nozare Valsts izglītības attīstības aģentūra October 2011. [Online]. Available: [Accessed: Apr. 1 2015].

  • [3] B. Berwick M. Farooq Truck Costing Model for Transportation Managers 2003.

  • [4] B. Berwick M. Farooq Truck Costs for Owner/Operators 1997.

  • [5] W. F. Chen Transportation System Planning. Methods and Application. USA: CRC Press LLC 2003 pp. 18-25 129-130.

  • [6] K.P. Gupta Cost Management. Measuring Monitoring and Motivating Performance. India: Global India Publications 2009 pp. 199–201.

  • [7] D. Levinson M. Corbett M. Hashami Operating Costs for Trucks 2011.

  • [8] I.A. Moosa Operational Risk Management. United Kingdom: Palgrave Macmillan 2007 pp. 1–25.

  • [9] Risk Management – Principles and Guidelines. International Standard ISO 31000:2009 2009.

  • [10] P. Curtis M. Carey Risk Assessment in Practice. Committee of Sponsoring Organizations of the Treadway Commissions 2012. [Online]. Available: [Accessed: Apr. 1 2015].

  • [11] H.P. Berg “Risk Management: procedures methods and experiences” Reliability: Theory & Applications vol. 1 pp. 79–95 2010.

  • [12] P. Jorisson Financial Risk Manager Handbook. USA: Wiley&Sons 2011 pp. 1–24.

  • [13] European Commission. EU transport in figures. Statistical Pocketbook 2014. [Online]. Available: [Accessed: Apr. 1 2015].

  • [14] J.J. Coyle R.A. Novack E.J. Bardi Transportation. A Supply Chain Perspective. USA: South-Western Cengage Learning 2011 494 p.

  • [15] G. Birzietis Transporta vadība un loģistika: Mācību līdzeklis. Latvija: Jelgava LLU 2008 pp. 143–145.

  • [16] H. Cheng “Uncertainty Quantification and Uncertainty Reduction Techniques for Large-scale Simulations” Ph.D. dissertation Virginia Polytechnic Institute and State University Virginia USA 2009.

  • [17] S. Apeland T. Aven T. Nilsen “Quantifying uncertainty under a predictive epistemic approach to risk analysis” 2001.

  • [18] J.R. Evans D.L. Olson Introduction to Simulation and Risk Analysis. USA: Prentice Hall 1998 279 p.

  • [19] R. A. Howard J. E. Matheson “Influence Diagrams” Decision Analysis vol. 2(3) pp. 127–143 2005.

  • [20] C.J. Burgess I. Dattani R. Keartion “Using Influence Diagrams in Software Change Management” in 7th International Conference on Software Quality Management (SQM’99) Software Quality Management VII London UK1999 pp. 177–187.

  • [21] Tatman “Decision Process in Influence Diagrams: Formulation and Analysis” Ph.D. dissertation Stanford University Stanford USA 1985.

  • [22] SmartDraw Influence diagrams. [Online]. Available: [Accessed: Apr. 1 2015].

  • [23] Lumina Influence diagrams. [Online]. Available: [Accessed: Apr. 1 2015].

Journal information
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 398 214 7
PDF Downloads 213 123 8