Heterogeneous versus Homogeneous Machine Learning Ensembles

Open access


The research demonstrates efficiency of the heterogeneous model ensemble application for a cancer diagnostic procedure. Machine learning methods used for the ensemble model training are neural networks, random forest, support vector machine and offspring selection genetic algorithm. Training of models and the ensemble design is performed by means of HeuristicLab software. The data used in the research have been provided by the General Hospital of Linz, Austria.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Hennicker R. Klarl A. “Foundations for Ensemble Modelling – The Helena Approach” Lecture Notes in Computer Science: Specification Algebra and Software 2014 vol. 8373 pp. 359–381.

  • [2] Zhou Z.-H. Ensemble Methods: Foundations and algorithms. Boca Raton: Chapman and Hall/CRC 2012. 236 p.

  • [3] Re M. Valentini G. Advances in Machine Learning and Data Mining for Astronomy. Boca Raton: Chapman & Hall/CRC 2012 744 p.

  • [4] Genetic Algorithms and Genetic Programming: Modern Concepts and Practical Applications. M. Affenzeller S. Wagner S. Winkler. Boca Raton: Chapman & Hall/CRC 2009. 379 p.

  • [5] Affenzeller M. Wagner S. “Offspring Selection: A New Self-Adaptive Selection Scheme for Genetic Algorithms” in Proc. of the Int. Conf. in Coimbra Portugal 2005 pp. 218–221. http://dx.doi.org/10.1007/3-211-27389-1_52

  • [6] Cristianini N. Shawe-Taylor J. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge: Cambridge University Press 2000. 198 p. http://dx.doi.org/10.1017/CBO9780511801389

  • [7] Burges C.J.C. “A Tutorial on Support Vector Machines for Pattern Recognition” Data Mining and Knowledge Discovery 1998 vol. 2 pp. 121–167. http://dx.doi.org/10.1023/A:1009715923555

  • [8] SVM – Support Vector Machines [Online]. Accessed 12th November 2015. Available: https://www.dtreg.com/solution/view/20

  • [9] Auria L. Moro R.A. “Support Vector Machines as a Technique for Solvency Analysis” Discussion papers of German Institute for Economic Research 2008 18 p.

  • [10] Cheung V. Cannons K. An Introduction to Neural Networks [Online]. Available: http://www2.econ.iastate.edu/tesfatsi/neuralnetworks.cheungcannonnotes.pdf. Accessed on: Nov. 10 2015.

  • [11] Rogers C. The Advantages of Artificial Neural Networks [Online]. Available: http://www.ehow.com/info_8148024_advantages-artificial-neural-networks.html. Accessed on: Nov. 10 2015.

  • [12] Steinberg D. Golovnya M. Cardell N.S. A Brief Overview to Random Forests [Online]. Available: http://nymetro.chapter.informs.org/prac_cor_pubs/RandomForest_SteinbergD.pdf. Accessed on: Nov. 10 2015.

  • [13] A.L. Boulesteix S. Janitza J. Kruppa. “Overview of Random Forest Methodology and Practical Guidance with Emphasis on Computational Biology and Bioinformatics” WIREs Data Mining &KnowledgeDiscovery vol. 129 2012 pp. 1–31.

  • [14] Breast cancer description [Online]. Available: http://www.cancer.gov/cancertopics/types/breast. Accessed on: Nov. 10 2015.

  • [15] Cancer Statistics [Online]. Available: http://www.cancer.gov/statistics/. Accessed on: Nov. 10 2015.

  • [16] Description of Melanoma [Online]. Available: http://www.skincancer.org/skin-cancer-information/melanoma. Accessed on: Nov. 10 2015.

  • [17] Sarmady S. “An Investigation on Genetic Algorithm Parameters SiamakSarmady” School of Computer Science Universiti Sains Malaysia. 2007 10 p.

  • [18] Petrakova A. Uz mašīnapmācības metodēm balstīta heterogēnu modeļu ansambļa izveide. Master thesis. Riga Technical University Riga 2014 130 p.

Journal information
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1590 1199 31
PDF Downloads 583 480 8