Modeling VIX Index Based on Semi-parametric Markov Models with Frank Copula/ VIX indeksa modelēšana, izmantojot neparametriskos Markova modeļus ar Franka kopulu/ Моделирование VIX индекса посредством непараметрических Марковских моделей с копулой Франка

Open access

Abstract

The research studies the estimation of a semiparametric stationary Markov models based on a Frank copula density function. Described techniques allow us to estimate the parameters of the Frank copula, which has a better fit compared to previously selected regression models (estimators of the marginal distribution and the copula parameters are provided). We show how to apply our technique to the financial index VIX - a market mechanism that measures the 30-day forward implied volatility of the underlying index, the S&P500. Moreover, using MatLab we made VIX option index study - found the best copula fit under our condition, estimated nonlinear parameters and showed evaluation steps for copula based semi-parametric models.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] E. W. Frees E. A Valde “Understanding relationships using copulas”. North American Actuarial Journal 2 1998 pp. 1-25. http://dx.doi.org/10.1080/10920277.1998.10595667

  • [2] P. Embrechts A. McNeil D. Straumann “Correlation and dependence properties in risk management: properties and pitfalls” in: Dempster M. (Ed.) Risk Management: Value at Risk and Beyond. Cambridge University Press Cambridge pp. 176-223 2002. http://dx.doi.org/10.1017/CBO9780511615337.008

  • [3] A. Sklar “Fonctions de repartition an dimensionset leurs marges” Publ. Inst. Statis. Univ. Paris 8229-231 1959.

  • [4] W. Darsow B. Nguyen E. Olsen “Copulas and Markov processes” Illinois Journal of Mathematics 36 600-642 1992..

  • [5] X. Chen Y. Fan. “Estimation of copula-based semiparametric time series models” Journal of Econometrics 2006. http://dx.doi.org/10.1016/j.jeconom.2005.03.004

  • [6] D. B. Nelson “ARCH models as difusion approximations” Journal of Econometrics vol. 45 no. 1-2 pp. 7-38 1990.

  • [7] Y. Ait-Sahalia R. Kimmel “Maximum likelihood estimation of stochastic volatility models” Journal of Financial Economics 2007. http://dx.doi.org/10.1016/j.jfineco.2005.10.006

  • [8] X. Chen L. P. Hansen M. Carrasco “Nonlinearity and temporal dependence” Working Paper University of Chicago 1998.

  • [9] X. Chen Y. Fan “Pseudo-likelihood ratio tests for model selection in semiparametric multivariate copula models” Canadian Journal of Statistics 2004.

  • [10] H. R. Stoll R. E. Whaley “The Dynamics of Stock Index and Stock Index Futures Returns” Journal of Financial and Quantitative Analysis no. 25 1990 pp. 441-468. http://dx.doi.org/10.2307/2331010

  • [11] H. Joe Multivariate Models and Dependence Concepts. Chapman & Hall/CRC 1997. http://dx.doi.org/10.1201/b13150

  • [12] J. Carkovs “On Diffusion Approximation of Discrete Markov Dynamical Systems. In Computational Geometry” Proceedings of World Academy of Science Engineering and Technology vol. 30 pp. 1-6 2008.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 138 64 1
PDF Downloads 102 63 3