Performance Analysis of Robust Image Features Detection Algorithms

Open access

Abstract

This paper deals with the challenging task of acquiring stable image features in a sequence of images of the same scene taken under different viewing positions by a digital still camera. Two popular contemporary algorithms for discrete feature detection: SIFT and SURF are regarded. The results of the timing performance analysis of their sequential implementations are presented and discussed. The performance speedup analysis and scalability tests with multi-threading and GPU-based implementations are analyzed

References

  • 1. Bay, H., T. Tuytelaars & L. Van Gool. Surf: Speeded up Robust Features. Computer Vision-ECCV 2006, Springer Berlin Heidelberg, 2006, 404-417.

  • 2. Chapman, B., G. Jost & R. Van Der Pas. Using OpenMP: Portable Shared Memory Parallel Programming. - MIT Press, 10, 2008.

  • 3. Drepper, U. & I. Molnar. The Native POSIX Thread Library for Linux. White Paper, Red Hat Inc, 2003.

  • 4. Evans, C. Notes on the OpenSurf Library. University of Bristol, Tech. Rep. CSTR-09-001, January 2009.

  • 5. Glaskowsky, P. N. NVIDIA’s Fermi: the First Complete GPU Computing Architecture. White Paper, 2009.

  • 6. FAMILY, IBM PowerPC Microprocessor.Vector/SIMD Multimedia Extension Technology Programming Environments Manual, 2005.

  • 7. Fenlason, J. & R. Stallman. GNU gprof: the GNU Profiler. Manual, Free Software Foundation Inc, 1997.

  • 8. Hartley, R. & A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge University Press, 2003.

  • 9. Hennessy, J. L. & D. A. Patterson. Computer Architecture: A Quantitative Approach. Elsevier, 2012.

  • 10. Intel Corporation. Intel 64 and IA-32 Architectures Optimization Reference Manual, 2009.

  • 11. Lowe, D. G. Distinctive Image Features From Scale-Invariant Key Points. - International Journal of Computer Vision, 60 (2), 2004, 91-110.

  • 12. Schulz, A., F. Jung, S. Hartte, D. Trick, C. Wojek, K. Schindler & M. Goesele. CUDA SURF - a Real-time Implementation for SURF, 2010.

  • 13. Spivey, J. M. Fast, Accurate Call Graph Profiling. Software: Practice and Experience, 34 (3), 2004, 249-264.

  • 14. Szeliski, R. Computer Vision: Algorithms and Applications. Springer, 2010.

  • 15. Tuytelaars, T. & K. Mikolajczyk. Local Invariant Feature Detectors: A Survey. - Foundations and Trends® in Computer Graphics and Vision, 3 (3), 2008, 177-280.

  • 16. Vedaldi, A. Sift++ Source Code and Documentation [online], 2009. www.robots.ox.ac.uk/~vedaldi/code/siftpp.html.

  • 17. Viola, P. & M. J. Jones. Robust Real-time Face Detection. - International Journal of Computer Vision, 57 (2), 2004, 137-154.

  • 18. Zhang, N. Computing Parallel Speeded-up Robust Features (P-SURF) via POSIX Threads. Emerging Intelligent Computing Technology and Applications, Springer Berlin Heidelberg, 2009, 287-296

Information Technologies and Control

The Journal of Institute of Information and Communication Technologies of Bulgarian Academy of Sciences

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 33 33 24
PDF Downloads 5 5 4