Model Predictive Control of a pH Maintaining System

Open access


In this paper the problem of optimal regulation of a pH maintaining system is considered, where the outputs are the pH value and the liquid level in the system and the control inputs are the flow rates of the base input flow and the output flow. The optimal regulation problem is formulated as a nonlinear model predictive control problem in the presence of constraints. Two cases are considered: 1) presence of box constraints only on the control inputs and 2) considering also constraints on the rate of change of the inputs.


  • 1. Garcia, C. E., D. M. Prett, M. Morari. Model Predictive Control: Theory and Practice - A Survey. - Automatica, 25 ,1989, 35-348.

  • 2. Biegler, L. T., J. B. Rawlings. Optimization Approaches to Nonlinear Model Predictive Control. Proceedings of the Chemical Process Control IV, 1991, 543-571.

  • 3. Qin, S. J., T. A. Badgwell. A Survey of Industrial Model Predictive Control Technology. - Control Engineering Practice, 11, 2003, 733-764.

  • 4. Bemporad, A., M. Morari. Robust Model Predictive Control: A Survey. In Garulli, A., A.Tesi, A.Vicino (editors). Robustness in Identification and Control, number 245 in Lecture Notes in Control and Information Sciences, Springer-Verlag, 1999, 207-226.

  • 5. Mayne, D. Q., J. B. Rawlings, C. V. Rao, P. O. M. Scokaert. Constrained Model Predictive Control: Stability and Optimality. - Automatica, 36, 2000, 789-814.

  • 6. Maciejowski, J. M. Predictive Control with Constraints. Pearson Education Limited. 2002.

  • 7. Camacho, E. F., C. Bordons. Model Predictive Control. 2nd ed., Springer-Verlag, 2004.

  • 8. Grüne, L., J. Pannek. Nonlinear Model Predictive Control: Theory and Algorithms. Springer-Verlag, 2011.

  • 9. Grancharova, A., T. A. Johansen. Explicit Nonlinear Model Predictive Control: Theory and Applications, Lecture Notes in Control and Information Sciences. Springer-Verlag, 429, 2012.

  • 10. Athans, M., P. L. Falb. Optimal Control. An Introduction to the Theory and its Applications. McGraw Hill Ltd., 1966.

  • 11. Bellman, R. Dynamic Programming. Princeton University Press, New Jersey, 1957.

  • 12. Diehl, M., H. J. Ferreau, N. Haverbeke. Efficient Numerical Methods for Nonlinear MPC and Moving Horizon Estimation. In Magni, L., D. M. Raimondo, F. Allgöwer (Editors), Nonlinear Model Predictive Control: Towards New Challenging Applications,

Information Technologies and Control

The Journal of Institute of Information and Communication Technologies of Bulgarian Academy of Sciences

Journal Information


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 36 36 24
PDF Downloads 7 7 4