Ozone decomposition

Open access


Catalytic ozone decomposition is of great significance because ozone is a toxic substance commonly found or generated in human environments (aircraft cabins, offices with photocopiers, laser printers, sterilizers). Considerable work has been done on ozone decomposition reported in the literature. This review provides a comprehensive summary of the literature, concentrating on analysis of the physico-chemical properties, synthesis and catalytic decomposition of ozone. This is supplemented by a review on kinetics and catalyst characterization which ties together the previously reported results. Noble metals and oxides of transition metals have been found to be the most active substances for ozone decomposition. The high price of precious metals stimulated the use of metal oxide catalysts and particularly the catalysts based on manganese oxide. It has been determined that the kinetics of ozone decomposition is of first order importance. A mechanism of the reaction of catalytic ozone decomposition is discussed, based on detailed spectroscopic investigations of the catalytic surface, showing the existence of peroxide and superoxide surface intermediates

Aktyacheva L, Emelyanova G. (1990). Activated carbon treatment with ozone. J Phys Chem 31: 21 [in Rus].

Alexandrov YА, Tarunin BI, Perepletchikov МL. (1983). UV absorption of gaseous ozone. J Phys Chem LVII(10): 2385-2397 [in Rus].

Atale S, Hitoshi M, Kaneko N, Taraichi K, Yano M. (1995). Ozone reactions with various carbon materials. Jap Pat CA, 123, 121871.

Baldi M, Finochhio E, Pistarino C, Busca G. (1998). Evaluation of the mechanism of the oxy-dehydrogenation of propane over manganese oxide. J Appl Catal A: General 173: 61-74.

Baltanas MA, Stiles AB, Katzer JR. (1986). Development of supported manganese oxides catalysts for partial oxidation: Preparation and hydrogenation properties. Appl Catal 28: 13-33.

Becker KH, Schurath U, Seitz H. (1974). Ozone-olefi n reactions in the gas phase 1. Rate constants and activation energies. Int J Chem Kinet 6(5) 725-739.

Bianchi CL, Pirola C, Ragaini V, Selli E. (2006). Mechanism and effi ciency of atrazine degradation under combined oxidation processes. Appl Catal B Environ 64(1-2): 131-138.

Boreskov GK. (1965). The catalysis of isotopic exchange in molecular oxygen Adv Catal 15: 285-339.

Brown TL, Le May HE Jr., Bursten BE, Burdge JR. (2002). Chemistry: The Central Science, Ninth edition, Prentice Hall, New Jersey.

Buciuman F, Patcas F, Craciun R, Zhan DRT. (1998). Vibrational spectroscopy of bulk and supported manganese oxides. Phys Chem Chem Phys 1: 185-190.

Chapman S. (1930a). On ozone and atomic oxygen in the upper atmosphere Phil Mag 10: 369-383.

Chapman S. (1930b). A theory of upper-atmospheric ozone. Mem Roy Meteorol Soc 3: 103-125

Che M, Tench AJ. (1982). Characterization and reactivity of mononuclear oxygen species on oxide surfaces. Adv Catal 31: 77-133.

Claudia C, Mincione E, Saladino R, Nicoletti R. (1994). Oxidation of substituted 2-thiouracils and pyrimidine-2-thione with ozone and 3,3-dimethyl-1,2-dioxirane. Tetrahedron 50(10): 3259-3272.

Crutzen PJ, Schmailzl U. (1983). Chemical budgets of the stratosphere. Planet Space Sci 31: 1009-1032.

DeMore WB, Raper O. (1964). Hartley and extinctiobn coeffi cients of ozone in the gas phase and in liquid nitrogen, carbon monoxide, and argon. J Phys Chem 68(2): 412-414.

Deninno MP, McCarthy KE. (1997). The C-14 radiolabeled synthesis of the cholesterol absorption inhibitor cp-148,623 - A novel method for the incorporation of a C-14 label in enones. Tetrahedron 53(32): 11007-11020.

Dhandapani B, Oyama ST. (1997). Gas phase ozone decomposition catalysts, J Appl Catal B: Environ 11(2): 129-166.

Egorova GV, Popovich MP, Filipov YuV. (1988). Ozone destruction on the surface of ammonium hydrogen sulfate. J Phys Chem 29(4): 406-413 [in Russian].

Einaga H, Futamura S. (2004). Comparative study on the catalytic activities of alumina-supported metal oxides for oxidation of benzene and cyclohexane with ozone. React Kinet Catal Lett 81(1): 121-128.

Einaga H, Futamura S. (2005). Oxidation behavior of cyclohexane on alumina- supported manganese oxide with ozone. J Appl Catal B: Environ 60(1-2): 49-55.

Einaga H, Harada M, Futamura S. (2005). Structural changes in alumina-supported manganese oxides during ozone decomposition. Chem Phys Lett 408(4-6): 377.

Einaga H, Ogata A. (2009). Benzene oxidation with ozone over supported manganese oxide catalysts: Eff ect of catalyst support and reaction conditions. J Hazard Mater. 164(2-3): 1236-1241.

Ellis WD, Tomets PV. (1972). Room-temperature catalytic decomposition of ozone. Atmospheric Environment 6(10): 707-714.

Emelyanova G, Lebedev V, Kobozev N. (1964). Catalytic activity of noble metals in ozone destruction. J Phys Chem 38: 170-180 [in Russian].

Emelyanova G, Lebedev V, Kobozev N. (1965). Ozone decomposition kinetics, J Phys Chem 39: 540-548 [in Russian].

Emelyanova G, Strakhov B. (1968). Activity of NiO in ozone decomposition reaction, Adv Probl Phys Chem 2: 149-158 [in Russian].

Farmen J, Gardiner B, Shanklin J. (1985). Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature 315: 207-210.

Galimova LG, Komisarov VD, Denisov EТ. (1973). Ozonation of phenol. Rep Rus Acad Sci 2: 307-317 [in Russian].

Gerchenson Yu, Zvenigorodskii S, Rozenstein V. (1990). Role of ozone for the greenhouse eff ect. Success Chemistry. 59: 1601-1609 [in Russian].

Griggs M. (1968). Absorption coeffi cients of ozone in the ultraviolet and visible regions. J Chem Phys 49(2): 857-859.

Hanisch F, Crowley JN. (2002). Ozone decomposition on Saharan dust: an experimental investigation. Atmos Chem Phys Discuss 2: 1809-1845.

Hata K, Horiuchi M, Takasaki T. (1988). Preparation of high performance metal catalyst. Jap Pat CA, 108, 61754u.

Hata K, Horiuchi M, Takasaki K, Ichihara S. (1987). Special technology for synthesis of catalysts, Jap Pat 62,201,648, Sep 5, to Nippon Shokubai Kagaku Kogyo Co., Ltd.

Heisig C, Zhang W, Oyama ST. (1997). Decomposition of Ozone using Carbon Supported Metal Oxide Catalysts. J Appl Catal B: Environ 14(1-2): 117-129.

Hon YS, Yan JL. (1993). The ozonolytic cleavage of cycloalkenes in the presence of methyl pyruvate to yield the terminally diff erentiated compounds. Tetrahedron Lett 34(41): 6591-6594.

Houzellot JZ, Villermaux J. (1976). Etude dune einetique de decomposition hetergene ... sur oxyde de nicel. J de Chemie Physique 73(7-8): 807-812.

Hunter P, Oyama ST. (2000). Control of Volatile Organic Compound Emissions: Conventional and Emerging Technologies, John Wiley & Sons, Inc.

Imamura S, Ikebata M, Ito T, Ogita T. (1991). Decomposition of ozone on a silver catalyst. Ind Eng Chem Res 30(1): 217-221.

Inn ECJ, Tanaka VJ. (1953). Absorption coeffi cient of ozone in the ultraviolet and visible regions. Opt Soc Amer 43(10): 870-872. Johnston HS. (1975). Global ozone balance in the natural stratosphere. Rev Geoph 13(5): 637-649.

Kapteijn F, Singoredjo L, Andreini A, Moulijn JA. (1994). Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia. J Appl Catal B: Environ 3(2-3): 173-189.

Kashtanov L, Ivanova N, Rizhov B. (1936). Catalytic activity of metals in ozone decomposition. J. Applied Chemistry 9: 2176-2182 [in Russian].

Kobayashi M, Mitsui K. (1988). Development for synthesis of zinc oxide, Jap. Pat. 63,267,439, Nov 4, to Nippon Shokubal Kagaku Kogyo Co., Ltd.

Kobayashi M, Mitsui M, Kiichiro K. (1988). Chemical composition of metal oxide catalysts, Jap Pat, CA, 109, 175615a.

Kobayashi M, Motonobu S, Mitsui M, Kiichiro K. (1989). Ozone decomposition on Pt/SiO2 catalyst, Jap Pat, CA, 110, 120511d.

Kondratev K. (1989). Ozone reaction with OH radicals. Meteorology and Climate. 19: 212-218 [in Russian].

Kondratev K. (1990). Ozonolysis of β-cyclodextrin. Success Chemistry 59: 1587-1598 [in Russian].

Konova P, Stoyanova M, Naydenov A, Christoskova ST, Mehandjiev D. (2006). Catalytic oxidation of VOCs and CO by ozone over alumina supported cobalt oxide. J Appl Catal A: Gen 298: 109-114.

Kutsuna S, Kasuda M, Ibusuki T. (1994).Transformation and decomposition of 1,1,1-trichloroethane on titanium dioxide in the dark and under photoillumination. Atmospheric Environment 28(9): 1627-1631.

Kuwabara H, Fujita H. (1991). Highly specifi c surface ZrO2 for ozone destruction, Jap Pat 3016640, Jan 24, to Mitsubishi Heavy Industries, Ltd.

Li W, Gibbs GV, Oyama ST. (1998). Mechanism of ozone decomposition on manganese oxide: 1. In situ laser Raman spectroscopy and ab initio molecular orbital calculations. J Am Chem Soc 120(35): 9041-9046.

Li W, Oyama ST. (1996). Catalytic methane oxidation at low temperatures using ozone, in Heterogeneous Hydrocarbon Oxidation (Acs Symposium Series) (Warren BK and Oyama ST eds) pp. 364-373, ACS: Washington, DC.

Li W, Oyama ST. (1998). The mechanism of ozone decomposition on manganese oxide: 2. Steady-state and transient kinetic studies. J Am Chem Soc 120(35): 9047-9052.

Lin J, Kawai A, Nakajima T. (2002). Eff ective Catalysts for Decomposition of Aqueous Ozone. J Appl Catal B: Environ 39(2): 157-165.

Lo Jacono M, Schiavello M. (1976). The infl uence of preparation methods on structural and catalytic properties of transition metal ions supported on alumina. Studies in Surface Science and Catalysis 1: 473-487.

Lunin VV, Popovich MP, Tkachenko SN. (1998). Physical chemistry of ozone. Moscow State University Publisher, 480 p. [in Russian].

Ma J, Chuah GK, Jaenicke S, Gopalakrishnan R, Tan KL. (1995). Catalysis by manganese oxide monolayers. Part 1: Alumina and magnesia supports. Berichte der Bunsengesellschaft für physikalische Chemie 99(2): 184-195.

Ma J, Chuah GK, Jaenicke S, Gopalakrishnan R, Tan KL. (1995). Catalysis by manganese oxide monolayers. Part 2: Zirconia support. Berichte der Bunsengesellschaft für physikalische Chemie 100(5): 585-593.

Ma J, Sui MH, Chen ZL, Li NW. (2004). Degradation of refractory organic pollutants by catalytic ozonation - activated carbon and Mn-loaded activated carbon as catalysts. Ozone Sci Eng 26(1): 3-10.

Maltha A, Favre LFT, Kist HF, Zuur AP, Ponec V. (1994). Manganese oxides as catalysts for the selective reduction of nitrobenzene to nitrosobenzene. J Catal 149(2): 364-374.

Martinov I, Demiduk V, Tkachenko S, Popovich M. (1994). Infl uence of the CuO and CoO on the process of ozone decomposition. J Phys Chem 68: 1972-1980 [in Rus].

Martinov IV, Tkachenko SN, Demidyuk VI, Egorova GV, Lunin VV. (1999). NiO Addition Infl uence over Cement-containing Catalysts Activity in Ozone Decomposition. J Moscow Univ, Ser. 2: Chemistry 40: 355-361 [in Rus].

Monchot W, Kampschulte W. (1907). Uber die Einwirkung von Ozon auf metallisches Silber und Quecksilber. Berichte der deutschen chemischen Gesellschaft 40(3): 2891.

Mori, Katsushiko, Hasimoto, Akira. (1993). Partial carbon oxidation by ozone, Jap. Pat., CA, 118, 153488v.

Muruganadham M, Chen SH, Wu JJ. (2007). Evaluation of water treatment sludge as a catalyst for aqueous ozone decomposition. Catal Commun 8(11): 1609-1614.

Naydenov A, Konova P, Nikolov P, Klingstedt F, Kumar N, Kovacheva D, Stefanov P, Stoyanova R, Mehandjiev D. (2008). Decomposition of ozone on Ag/SiO2 catalyst for abatement of waste gases emissions. Catal Today 137(2-4): 471-474. Naydenov A, Mehandjiev D. (1993). Complete oxidation of benzene on manganese dioxide by ozone. J Appl Catal A: Gen 97(1): 17-22.

Naydenov A, Stoyanova R, Mehandjiev D. (1995). Ozone decomposition and CO oxidation on CeO2. J Mol Catal A: Chem 98(1): 9-14.

Olszyna K, Cadle RD, dePena RG. (1979). Stratospheric heterogeneous decomposition of ozone. J Geophys Res: Oceans 84(C4): 1771-1775.

Oohachi K, Fukutake T, Sunao T. (1993). Method for synthesis of iron oxides, Jap Pat, CA, 119, 119194g.

Oyama ST. (2000). Chemical and catalytic properties of ozone. Catal Rev Sci Eng 42(3): 279-322.

Perry RH, Green D. (1997). Perry‘s chemical engineer‘s handbook, McGraw-Hill Professional, New York.

Popovich M. (1988). Infl uence of the SiO in ozone decomposition reaction. J Phys Chem 29(5): 427-434 [in Russian].

Popovich M. (1988). Investigation on ozone destruction over volcanic aerosols, J. Moscow Univ, Ser Chem 29: 29-35 [in Russian].

Popovich MP, Smirnova NN, Sabitova LV. (1987). Infl uence of Na content on the volcanic aerosols activity in ozone decomposition. J Phys Chem 28(6): 548-557 [in Russian].

Popovich M, Smirnova N, Sabitova L, Filipov Yu. (1985). Catalytic properties of copper oxide. J. Moscow Univ, Ser Chem 26: 167-177 [in Russian].

Qi F, Chen Z, Xu B, Shen J, Ma J, Joll C, Heitz A. (2008). Infl uence of surface texture and acid-base properties on ozone decomposition catalyzed by aluminum (hydroxyl) oxides. Appl Catal B: Environ 84(3-4): 684-690.

Radhakrishnan R, Oyama ST, Chen J, Asakura A. (2001). Electron Transfer Effects in Ozone Decomposition on Supported Manganese Oxide. J Phys Chem B 105(19): 4245-4253.

Rakitskaya TL, Bandurko AY, Ennan AA, Paina VY, Rakitskiy AS. (2001). Carbonfi brous-material-supported base catalysts of ozone decomposition. Micropor Mesopor Mat 43(2): 153-160.

Rakitskaya TL, Vasileva EK, Bandurko AY, Paina VY. (1994). Kinetics of Ozone Decomposition on Activated Carbons, Kinetics and Catalysis 35(1): 90-92.

Rakovsky S, Nenchev L, Cherneva D. (1979). Decomposition of ozone in presence of NiO, in Proc. 4th Symp. Heterogeneous Catalysis, Varna, p. 231.

Rakovsky SK, Zaikov GE. (2007). Kinetic and mechanism of ozone reactions with organic and polymeric compounds in liquid phase - 2nd edition, Nova Sci. Publ., Inc. New York.

Razumovskii SD, Rakovsky SK, Shopov DM, Zaikov GE. (1983). Ozone and its reactions with organic compounds. Publ. House of Bulgarian Academy of Sciences, Sofi a, 287 p. [in Russian].

Razumovskii SD, Zaikov GE. (1974). Ozone and its reactions with organic compounds, Moscow [in Russian].

Rosal R, Rodriguez A, Gonzalo MS, Garcia-Calvo E. (2008). Catalytic ozonation of naproxen and carbamazepin on titanium dioxide. Appl Catal B: Environ 84(1-2): 48-57.

Rubashov AM, Pogorelov VV, Strahov BV. (1972). Catalytic activity of Fe2O3 in decomposition of ozone. J Phys Chem 46(9): 2283-2291 [in Russian].

Rubashov AM, Strahov BV. (1973). Formation of oxygen species on Fe2O3 surface during ozonation. J Phys Chem 47(8): 2115-2122 [in Russian].

Schonbein CF. (1840). On the odour accompanying electricity and on the probability of its dependence on the presence of a new substance. Philosophical Magazine 17: 293-294.

Schwab G, Hartman C. (1964). Metal catalysts for decomposition of ozone. J Phys Chem 6: 72-86 [in Russian].

Skoumal M, Cabot PL, Centellas F, Arias C, Rodriguez RM, Garrido JA, Brillas E. (2006). Mineralization of paracetamol by ozonation catalyzed with Fe2+, Cu2+ and UVA light. Appl Catal B: Environ 66(3-4): 228-240.

Solomon S, Garcia RR, Rowland F, Wueblles P. (1986). Regeneration rates of the stratospheric ozone. Nature 321: 755-758.

Stoyanova M, Konova P, Nikolov P, Naydenov A, Christoskova ST, Mehandjiev D. (2006). Alumina-supported nickel oxide for ozone decomposition and catalytic ozonation of CO and VOCs. Chem Eng J 122(1-2): 41-46.

Subrahmanyam C, Bulushev DA, Kiwi-Minsker L. (2005). Dynamic behaviour of activated carbon catalysts during ozone decomposition at room temperature. Appl Catal B: Environ 61(1-2): 98-106.

Subrahmanyam C, Renken A, Kiwi-Minsker L. (2007). Novel catalytic nonthermal plasma reactor for the abatement of VOCs. Chem Eng J 134(1-3): 78-83.

Sudak A, Volfson V. (1983). Catalytic Method of Removing Ozone Impurities from Air. The Role of Chemistry in Preserving the Environment. Scientifi c Notion, Kiev, 87-100 [in Russian].

Sullivan RC, Thornberry T, Abbatt JPD. (2004). Ozone decomposition kinetics on alumina: Eff ects of ozone partial pressure, relative humidity and repeated oxidation cycles. Atmos Chem Phys 4: 1301-1310.

Tanaka V, Inn ECJ, Watanabe KJ. (1953). Absorption coeffi cients of gases in the vacuum ultraviolet. Part IV. Ozone. J Chem Phys 21(10): 1651-1654.

Tarunin BI, Perepletchikov ML, Klimova MN. (1981). Kinetics of decomposition of ozone in gradient-free reactor. Kinetics and Catalysis 22(2): 431-442 [in Russian].

Taube H. (1957). Photochemical reactions of ozone in solution. Trans Faraday Soc 53: 656-665.

Tchihara S. (1988). Co-catalyst for decomposition of ozone. Jap Pat, CA, 108, 192035h.

Tench AJ, Lawson T. (1971). The formation of O− and O3 − adsorbed on an oxide surface. Chem Phys Lett 7(4): 459-460.

Terui S, Miyoshi K, Yokota Y, Inoue A. (1990). Experimental method for ozone decomposition on silver oxide catalyst, Jap Pat 02,63,552, Mar 2.

Terui S, Sadao K, Sano N, Nichikawa T. (1990). Synthesis of supported silver oxide catalysts, Jap Pat, CA, 112, 20404p.

Terui S, Sadao K, Sano N, Nichikawa T. (1991). Investigation on Pd and Rh catalysts supported on colloidal polyurethane for ozone destruction, Jap Pat, CA, 114, 108179b.

Thorp CE. (1955). Bibliography of Ozone Technology Volume 2: Physical and Pharmacological Properties, Armour Research.

Tkalich VS, Klimovskii AO, Lissachenko AA. (1984). Study of heterogeneous reactions of ozone. Experimental installation and method. Kinetics and Catalysis 25(5): 1109-1116 [in Russian].

Tong S, Liu W, Leng W, Zhang Q. (2003). Characteristics of MnO2 catalytic ozonation of sulfosalicylic acid propionic acid in water. Chemosphere 50(10): 1359-64.

Valdes H, Sanches-Polo M, Rivera-Utrilla J, Zaror CA. (2002). Eff ect of ozone treatment on surface properties of activated carbon, Langmuir, 18, 2111.

Von Gunten U. (2003). Ozonation of drinking water: Part I. Oxidation kinetics and product formation, Water Res., 37, 1443-1463.

Vupputuri R. (1988). Optical properties of stratospheric ozone, Atm. Environ., 22, 2809.

Watson RT, Geller MA, Stolarski RS, Hampson RF, United States - Offi ce Of Space Science And Applications - Earth Science And Applications Division. (1986). Present state of knowledge of the upper atmosphere : an assessment report: processes that control ozone and other climatically important trace gases. NASA Reference Publication Nr. 1162, NASA, Scientifi c and Technical Information Branch; Springfi eld, VA.

Wiley-VCH. (1991). Ullmann’s Encyclopedia of Industrial Chemistry. John Wiley and Sons, New York.

Yamashita T, Vannice A. (1996). N2O Decomposition over Manganese Oxides, J Catalysis 161(1): 254-262.

Yoshimoto M, Nakatsuji T, Nagano K, Yoshida K. (1990). Pd-catalyzed ozonation of aqueous phenol solution, Eur. Pat. 90,302,545.0, Sep 19, to Sakai Chemical Industry Co., Ltd.

Zavadskii AV, Kireev SG, Muhin VM, Tkachenko SN, Chebkin VV, Klushin VN, Teplyakov DE. (2002). Eff ect of thermal treatment on the activity of hopcalite in ozone decomposition. J Phys Chem 76: 2072-2074 [in Russian].

Zhao L, Ma J, Sun ZZ, (2008). Oxidation products and pathway of ceramic honeycomb-catalyzed ozonation for the degradation of nitrobenzene in aqueous solution. Appl Catal B: Environ 79(3): 244-253.

Interdisciplinary Toxicology

The Journal of Institute of Experimental Pharmacology of Slovak Academy of Sciences

Journal Information

CiteScore 2017: 2.36

SCImago Journal Rank (SJR) 2017: 0.580
Source Normalized Impact per Paper (SNIP) 2017: 1.134

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 334 334 40
PDF Downloads 198 198 18