Redox properties of ginger extracts: Perspectives of use of Zingiber officinale Rosc. as antidiabetic agent

Lucia Račková PhD. 1 , Mária Cupáková 2 , Anton Ťažký 3 , Júlia Mičová 4 , Emil Kolek 5 , and Daniela Košťálová 2
  • 1 Institute of Experimental Pharmacology and Toxicology Slovak Academy of Sciences Dúbravská cesta 9, 841 04 Bratislava, Slovak Republic. TEL.: +421-2-59410659
  • 2 Department of Nutrition and Food Assesment, Institute of Biochemistry, Nutrition and Health Protection, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
  • 3 Toxicological and Antidoping Centre, Comenius University, Faculty of Pharmacy, Odbojárov 10, SK-832 32 Bratislava, Slovak Republic
  • 4 Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38 Bratislava, Slovak Republic
  • 5 Department of Food Analysis, VÚP Food Research Institute, Priemyselná 4, SK-824 75, Bratislava, Slovak Republic


In traditional medicine, several medicinal plants or their extracts have been used to treat diabetes. Zingiber officinale Roscoe, known commonly as ginger, is consumed worldwide in cookeries as a spice and flavouring agent. It has been used as the spice and medicine for thousands of years. The present study was undertaken to investigate the potential protective effect of Zingiber officinale Rosc. in a model of oxidative damage to pancreatic β cells. The free radical scavenging activities and composition of the isolated n-hexane and ethanolic extracts were confronted with their protective, antioxidant and cytotoxic effects in INS-1E β cells. Unlike the n-hexane extract (exerting, paradoxically, stronger antiradical capacity), both low cytotoxicity and remarkable protective effects on β cell viability, followed by lowering oxidative stress markers were found for the ethanolic extract Zingiber officinale Rosc. The present study is the first pilot study to assess the protective potential of Zingiber officinale Rosc. in a model of cytotoxic conditions imposed by diabetes in β cells.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Ali BH, Blunden G, Tanira MO, Nemmar A. (2008). Some phytochemical, pharmacological ant toxicological properties of ginger (Zingiber officinale Roscoe): a review of recent research. Food Chem Toxicol 46: 409-420.

  • Anderson R. (1992). A peroxidase-independent method for the quantitation of extracellular hydrogen peroxide generated by activated phagocytes invitro. J Immunol Methods 155: 49-55.

  • Bhandari U, Kanojia R, Pillai KK. (2005). Effect of ethanolic extract of Zingiberofficinale on dyslipidaemia in diabetic rats. J Ethnopharmacol 97: 227-230.

  • Bilehal DC, Sung DD, Kim YH. (2010). Influence of the Solvent, Hydrodistillation- Headspace Solvent Microextraction and Composition of Korean Ginger. Food Anal Methods doi: 10.1007/s12161-010-9133-9

  • Bortolotti C, Kunit T, Moder A, Hufnag C, Schmidt S, Hartl A, Langelueddecke Ch, Furst J, Geibel JP, Ritter M, Jakab M. (2009). The Phytostilbene Resveratrol Induces Apoptosisin INS-1E Rat Insulinoma Cells. Cell Physiol Biochem23: 245-254.

  • Budd SL, Castilho RF, Nicholls DG. (1997). Mitochondrial membrane potential and hydroethidine-monitored superoxide generation in cultured cerebellar granule cells. FEBS Lett 415: 21-24.

  • El-Ghorab AH, Nauman M, Anjum FM, Hussain S, Nadeem M. (2010). A comparative study on chemical composition and antioxidant activity of ginger (Zingiber officinale) and cumin (Cuminum cyminum). J Agric Food Chem 58: 8231-8237.

  • Halliwell B, Whiteman M. (2004). Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? British J Pharmacol 142: 231-255.

  • Jain V, Prasad V, Pal R, Singh S, 2007. Standardization and stability studies of neuroprotective lipid soluble fraction obtained from Curcumae longa. JPharm Biomed Anal 44: 1079-1086.

  • Janjic D, Wollheim CB. (1992). Islet cell metabolism is reflected by the MTT (tetrazolium) colorimetric assay. Diabetologia 35: 482-485.

  • Jolad SD, Lantz RC, Solyom AM, Chen GJ, Bates RB, Timmermann BN. (2004). Fresh organically grown ginger (Zingiber officinale): composition and effects on LPS-induced PGE2 production. Phytochemistry 63: 1937-1954.

  • Khanom IF, Kayahara H, Hirota M, Tadasa K. (2003). Superoxide Scavenging and Tyrosinase Inhibitory Active Compound in Ginger (Zingiber officinale Roscoe). Pakistan J Biol Sci 6: 1996-2000.

  • Lako J, Trenerry VC, Wahlqvist Wattanapenpaiboo N, Sotheeswaran S, Premier R. (2007). Phytochemical flavonols, carotenoids and the antioxidant properties of wide selection of Fijian fruit, vegetables and other readily available foods. Food Chem 101: 1727-1741.

  • Lantz RC, Chen GJ, Sarihan M, Solyom AM, Jolad SD. (2007). The effect of extract from ginger rhizome on inflammatory mediator production. Phytomedicine14: 123-128.

  • Lapidot T, Walker MD, Kanner J. (2002). Antioxidant and Prooxidant Effects of Phenolics on Pancreatic β-Cells in vitro. J Agric Food Chem 50: 7220-7225.

  • Leverve XM, Guigas B, Detaille D, Batandier C, Koceir EA, Chauvin C, Fontaine E, Wiernsperger NF. (2003). Mitochondrial metabolism and type-2 diabetes: a specific target of metformin. Diabetes Metab 6: S88-S94.

  • Liu H, Qui N, Ding H, Yao R. (2008). Polyphenols contents and antioxidant capacity of 68 Chinese herbals suitable for medical or food uses. Food Res Int41: 363-370.

  • Maechler P, Jornot L, Wollheim CB. (1999). Hydrogen Peroxide Alters Mitochondrial Activation and Insulin Secretion in Pancreatic Beta Cells. J BiolChem 274: 27905-27913.

  • Merglen A, Theander S, Rubi B, Chaffard G, Wollheim CB, Maechler P. (2004). Glucose sensitivity and metabolism-secretion coupling studied during two-year continuous culture in INS-1E insulinoma cells. Endocrinology 145: 667-678.

  • Moridani MY, Siraki A, O’Brien PJ. (2003). Quantitative structure toxicity relationships for phenols in isolated rat hepatocytes. Chem Biol Interactions145: 213-223.

  • Natta L, Orapin K, Krittika N, Pantip B, (2008). Essential oil from five Zingiberaceae for anti food-borne bacteria. Int Food Res J 15: 337-346.

  • Nishikawa T, Araki E. (2007). Impact of mitochondrial ROS production in the pathogenesis of diabetes mellitus and its complications. Antioxid RedoxSignal 9: 343-353.

  • Ohashi T, Mizutani A, Murakami A, Kojo S, Ishii T, Taketani S. (2002). Rapid oxidation of dichlorodihydrofluorescin with heme and hemoproteins: formation of the fluorescein is independent of the generation of reactive oxygen species. FEBS Lett 511: 21-27.

  • Ojewole JAO. (2006). Analgesic, antiinflammatory and hypoglycaemic effects of ethanol extract of Zingiber officinale (Roscoe) rhizomes (Zingiberaceae) in mice and rats. Phytotherapy Res 20: 764-772.

  • Račkova L, Cumaoğlu A, Bağrıacık EU, Štefek M, Maechler P, Karasu C. (2011). Novel hexahydropyridoindole derivative as prospective agent against oxidative damage in pancreatic β cells. Med Chem 7: 711-717.

  • Račkova L, Šnirc V, Jung T, Štefek M, Karasu C, Grune T. (2009a). Metabolism induced oxidative stress is a mediator of glucose toxicity in HT22 neuronal cells. Free Radic Res 24: 1-11.

  • Račkova L, Košťalova D, Bezakova L, Fialova S, Bauerova K, Toth J, Štefek M, Vanko M, Holkova I, Obložinsky M. (2009b). Comparative study of two natural antioxidants, curcumin and Curcuma longa extract. J Food Nutr Res 48: 148-152.

  • Ribble D, Goldstein NB, Norris DA, Shellman YG. (2005). A simple technique for quantifying apoptosis in 96-well plates. BMC Biotechnol 5: 12-19.

  • Sacchetti G, Maietti S, Muzzoli M, Scaglianti M, Manfredini S, Radice M, Bruni R. (2005). Comparative avaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods. FoodChem 91: 621-632.

  • Saito S, Kawabata J. (2004). Synergistic effects of thiols and amines on antiradical efficiency of protocatechuic acid. J Agric Food Chem 52: 8163-8168.

  • Singh G, Kapoor IPS, Singh P, de Heluani CS, de Lampasona MP, Catala CAN. (2008). Chemistry, antioxidant and antimicrobial investigations on essential oil and oleoresins of Zingiber officinale. Food Chem Toxicol 46: 3295-3302.

  • Stefek M, Gajdosik A, Tribulova N, Navarova J, Volkovova K, Weismann P, Gajdosikova A, Drimal J, Mihalova D. (2002). The pyridoindole antioxidant stobadine attenuates albuminuria, enzymuria, kidney lipid peroxidation and matrix collagen cross-linking in streptozotocin-induced diabetic rats. MethFind Exp Clin Pharm 24: 565-571.

  • Tampo Y, Kotamraju S, Chitambar RC, Kalivendi SV, Keszler A, Joesph J, Kalyanaraman B. (2003). Oxidative stress-induced iron signaling is responsible for peroxidedependent oxidation of dichlorodihydrofluorescein in endotheliel cells. Role of transferrin receptor-dependent iron uptake in apoptois. Circ Res 92: 56-63.

  • Wong SP, Leong LP, Koh JHW. (2006). Antioxidant activities of aqueous extracts of selected plants. Food Chem 99: 775-783.

  • Zhang S, Liu Q, Liu Y, Qiao H, Liu Y. (2012) Zerumbone, a Southeast Asian Ginger Sesquiterpene, Induced Apoptosis of Pancreatic Carcinoma Cells through p53 Signaling Pathway. Evid Based Complement Alternat Med [online]. Vol. 2012, No. 2012, 29 Jan 2012 [cit. 3 February 2013]. <http://www.>. ISSN: 1741-4288.

  • Yang L, Zhou C, Huang K, Song L, Zheng Q, Yu R, Zhang R, Wu Y, Zeng S, Cheng CH, Zhao Y, Li X, Qu J. (2009). Antioxidative and cytotoxic properties of diarylheptanoids isolated from Zingiber officinale. Zhongguo ZhongYao Za Zhi 34: 319-23.


Journal + Issues