Medicinal plants and natural products can play a significant role in mitigation of mercury toxicity

Open access


Mercury is a heavy metal of considerable toxicity. Scientific literature reveals various plants and plant derived natural products, i.e., phytochemicals, which can alleviate experimentally induced mercury toxicity in animals. The present review attempts to collate those experimental studies on medicinal plants and phytochemicals with ameliorative effects on mercury toxicity. A literature survey was carried out by using Google, Scholar Google, Scopus and Pub-Med. Only the scientific journal articles found in the internet for the last two decades (1998–2018) were considered. Minerals and semi-synthetic or synthetic analogs of natural products were excluded. The literature survey revealed that in pre-clinical studies 27 medicinal plants and 27 natural products exhibited significant mitigation from mercury toxicity in experimental animals. Clinical investigations were not found in the literature. Admissible research in this area could lead to development of a potentially effective agent from the plant kingdom for clinical management of mercury toxicity in humans.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Abarikwu SO Benjamin S Ebah SG Obilor G Agbam G. (2017). Oral administration of Moringa oleifera oil but not coconut oil prevents mercury-induced testicular toxicity in rats. Andrologia 49: e12597.

  • Abd El-Aziz GS El-Fark MM Saleh HA. (2012). The prenatal toxic effect of methylmercury on the development of the appendicular skeleton of rat fetuses and the protective role of vitamin E. Anat Rec (Hoboken) 295: 939–949.

  • Abdalla FH Bellé LP De Bona KS Bitencourt PE Pigatto AS Moretto MB. (2010). Allium sativum L. extract prevents methyl mercury-induced cytotoxicity in peripheral blood leukocytes (LS). Food Chem Toxicol 48: 417–421.

  • Aflanie I. (2015). Effect of heavy metal on malondialdehyde and advanced oxidation protein products concentration: A focus on arsenic cadmium and mercury. J Med Bioengg 4: 332–337.

  • Agarwal R Goel SK Behari JR. (2010b). Detoxification and antioxidant effects of curcumin in rats experimentally exposed to mercury. J Appl Toxicol 30: 457–68.

  • Agarwal R Goel SK Chandra R Behari JR. (2010a). Role of vitamin E in preventing acute mercury toxicity in rat. Environ Toxicol Pharmacol 29: 70–78.

  • Ahn CB Song CH Kim WH Kim YK. (2002). Effects of Juglans sinensis Dode extract and antioxidant on mercury chloride-induced acute renal failure in rabbits. J Ethnopharmacol 82: 45–49.

  • Alam MS Kaur G Jabbar Z Javed K Athar M. (2007). Eruca sativa seeds possess antioxidant activity and exert a protective effect on mercuric chloride induced renal toxicity. Food Chem Toxicol 45: 910–20.

  • Andersen HR Andersen O. (1993). Effects of dietary alpha-tocopherol and beta-carotene on lipid peroxidation induced by methyl mercuric chloride in mice. Pharmacol Toxicol 73: 192–201.

  • Ansar S. (2015). Pretreatment with diallylsulphide modulates mercury-induced neurotoxicity in male rats. Acta Biochimica Polonica 62: 599–603.

  • Arantes LP Peres TV Chen P Caito S Aschner M Soares FA. (2016). Guarana (Paullinia cupana Mart.) attenuates methylmercury-induced toxicity in Caenorhabditis elegans. Toxicol Res (Camb) 5: 1629–1638.

  • Asadi S Zhang B Weng Z Angelidou A Kempuraj D Alysandratos KD Theoharides TC. (2010). Luteolin and thiosalicylate inhibit HgCl(2) and thimerosal-induced VEGF release from human mast cells. Int J Immunopathol Pharmacol 23: 1015–1020.

  • Augusti PR Conterato GM Somacal S Einsfeld L Ramos AT Hosomi FY Graça DL Emanuelli T. (2007). Effect of lycopene on nephrotoxicity induced by mercuric chloride in rats. Basic Clin Pharmacol Toxicol 100: 398–402.

  • Augusti PR Conterato GM Somacal S Sobieski R Spohr PR Torres JV Charão MF Moro AM Rocha MP Garcia SC Emanuelli T. (2008). Effect of astaxan-thin on kidney function impairment and oxidative stress induced by mercuric chloride in rats. Food Chem Toxicol 46: 212–219.

  • Ayyathan DM Chandrasekaran R Thiagarajan K. (2015). Neuroprotective effect of Brahmi an ayurvedic drug against oxidative stress induced by methyl mercury toxicity in rat brain mitochondrial-enriched fractions. Nat Prod Res 29: 1046–1051.

  • Babu K Uma Maheswari KC. (2006). In vivo studies on the effect of Ocimum sanctum L. leaf extract in modifying the genotoxicity induced by chromium and mercury in Allium root meristems. J Environ Biol 27: 93–95.

  • Barcelos GR Angeli JP Serpeloni JM Grotto D Rocha BA Bastos JK Knasmüller S Júnior FB. (2011b). Quercetin protects human-derived liver cells against mercury-induced DNA-damage and alterations of the redox status. Mutat Res726: 109–115.

  • Barcelos GR Grotto D Serpeloni JM Aissa AF Antunes LM Knasmüller S Barbosa F Jr. (2012). Bixin and norbixin protect against DNA-damage and alterations of redox status induced by methylmercury exposure in vivo. Environ Mol Mutagen 53: 535–541.

  • Barcelos GR Grotto D Serpeloni JM Angeli JP Rocha BA de Oliveira Souza VC Vicentini JT Emanuelli T Bastos JK Antunes LM Knasmüller S Barbosa F Jr. (2011a). Protective properties of quercetin against DNA damage and oxidative stress induced by methylmercury in rats. Arch Toxicol 85: 1151–1157.

  • Bellé LP De Bona KS Abdalla FH Pimentel VC Pigatto AS Moretto MB. (2009). Comparative evaluation of adenosine deaminase activity in cerebral cortex and hippocampus of young and adult rats: effect of garlic extract (Allium sativum L.) on their susceptibility to heavy metal exposure. Basic Clin Pharmacol Toxicol 104: 408–413.

  • Bernhoft RA. (2012). Mercury toxicity and treatment: a review of the literature. J Environ Public Health 2012: Article ID 460508.

  • Bhattacharya S Haldar PK. (2011). Trichosanthes dioica root extract induces tumor proliferation and attenuation of antioxidant system in albino mice bearing Ehrlich ascites carcinoma. Interdiscip Toxicol 4: 184–90.

  • Bhattacharya S Haldar PK. (2012a). Trichosanthes dioica root possesses stimulant laxative activity in mice. Nat Prod Res 26: 952–957.

  • Bhattacharya S Haldar PK. (2012b). Protective role of the triterpenoid-enriched extract of Trichosanthes dioica root against experimentally induced pain and inflammation in rodents. Nat Prod Res 26: 2348–2352.

  • Bhattacharya S. (2017). Medicinal plants and natural products in amelioration of arsenic toxicity: a short review. Pharm Biol 55: 349–354.

  • Bhattacharya S. (2018). The role of medicinal plants and natural products in melioration of cadmium toxicity. Oriental Pharm Exp Med 18 (3): pp 177–186

  • Boroushaki MT Mollazadeh H Rajabian A Dolati K Hoseini A Paseban M Farzadnia M. (2014). Protective effect of pomegranate seed oil against mercuric chloride-induced nephrotoxicity in rat. Ren Fail 36: 1581–1586.

  • Cavusoglu K Oruc E Yapar K Yalcin E. (2009). Protective effect of lycopene against mercury-induced cytotoxicity in albino mice: pathological evaluation. J Environ Biol 30: 807–814.

  • Cunha FAB Pinho AI Santos JFS Sobral-Souza CE Leite NF Albuquerque RS Tintino SR Costa JGM Matias EFF Boligon AA Waczuk EP Rocha JBT Posser T Coutinho HDM Quintans-Junior LJ Franco JL. (2016). Cytoprotective effect of Eugenia uniflora L. against the waste contaminant mercury chlo-ride. Arabian J Chem

  • Das SK Bhattacharya S Kundu A. (2013). Rationalized design synthesis and pharmacological screening of amino acid linked spiro pyrrolidino oxyin-dole analogs through environment friendly reaction. J Adv Pharm Technol Res 4: 198–205.

  • Deng Y Xu Z Liu W Yang H Xu B Wei Y. (2012). Effects of lycopene and proanthocyanidins on hepatotoxicity induced by mercuric chloride in rats. Biol Trace Elem Res 146: 213–223.

  • Elseady Y Zahran E. (2013). Ameliorating effect of β-carotene on antioxidant response and hematological parameters of mercuric chloride toxicity in Nile tilapia (Oreochromis niloticus). Fish Physiol Biochem 39: 1031–1041.

  • Figueredo FG Lima LF Morais-Braga MF Tintino SR Farias PA Matias EF Costa JG Menezes IR Pereira RL Coutinho HD. (2016). Cytoprotective effect of Lygodium venustum Sw. (Lygodiaceae) against mercurium chloride toxicity. Scientifica (Cairo) 2016: 4154265.

  • Franco JL Posser T Missau F Pizzolatti MG Dos Santos AR Souza DO Aschner M Rocha JB Dafre AL Farina M. (2010). Structure-activity relationship of flavonoids derived from medicinal plants in preventing methylmercury-induced mitochondrial dysfunction. Environ Toxicol Pharmacol 30: 272–278.

  • Frenedoso da Silva R Missassi G dos Santos Borges C Silva de Paula E Hornos Carneiro MF Grotto D Barbosa Junior F De Grava Kempinas W. (2014). Phytoremediation potential of Maná-Cubiu (Solanum sessiliflorum Dunal) for the deleterious effects of methylmercury on the reproductive system of rats. Biomed Res Int 2014: 309631.

  • Gado AM Aldahmash BA. (2013). Antioxidant effect of Arabic gum against mercuric chloride-induced nephrotoxicity. Drug Des Devel Ther 7: 1245–1452.

  • Gao D Zeng LN Zhang P Ma ZJ Li RS Zhao YL Zhang YM Guo YM Niu M Bai ZF Xiao XH Gao WW Wang JB. (2016). Rhubarb anthraquinones protect rats against mercuric chloride (HgCl2)-induced acute renal failure. Molecules 21: 298.

  • García-Niño WR Pedraza-Chaverrí J. (2014). Protective effect of curcumin against heavy metals-induced liver damage. Food Chem Toxicol 69: 182-201.

  • Gupta VK Siddiqi NJ Singh S Agrawal A Sharma B. (2015). Phytochemicals mediated remediation of neurotoxicity induced by heavy metals. Biochem Res Int 2015 Article ID 534769.

  • Hallal N Kharoubi O Benyettou I Tair K Ozaslan M Aoues AEK. (2016). In vivo amelioration of oxidative stress by Artemisia absinthium L. administration on mercuric chloride toxicity in brain regions. J Biol Sci 16: 167–177.

  • Harisa GI Mariee AD Abo-Salem OM Attiaa SM. (2014). Erythrocyte nitric oxide synthase as a surrogate marker for mercury-induced vascular damage: the modulatory effects of naringin. Environ Toxicol 29: 1314–1422.

  • Heinz GH Hoffman DJ Klimstra JD Stebbins KR Kondrad SL Erwin CA. (2012). Hormesis associated with a low dose of methylmercury injected into mallard eggs. Arch Environ Contam Toxicol 62: 141–144.

  • Helmcke KJ Aschner M. (2010). Hormetic effect of methylmercury on Caenorhabditis elegans. Toxicol Appl Pharmacol 248: 156–64.

  • Ibegbu AO Micheal A Abdulrazaq AA Daniel B Sadeeq AA Peter A Hamman WO Umana UE Musa SA. (2014). Ameliorative effect of ascorbic acid on mercury chloride induced changes on the spleen of adult wistar rats. J Exp Clin Anatomy 13: 60–65.

  • Jacob S Thangarajan S. (2017). Effect of gestational intake of fisetin (33’4’7-Tetrahydroxyflavone) on developmental methyl mercury neurotoxicity in F1 generation rats. Biol Trace Elem Res 177: 297–315.

  • Jagadeesan G Kavitha AV Subashini J. (2005). FT-IR Study of the influence of Tribulus terrestris on mercury intoxicated mice Mus musculus liver. Trop Biomed 22: 15–22.

  • Jagadeesan G Kavitha AV. (2006). Recovery of phosphatase and transaminase activity of mercury intoxicated Mus musculus (Linn.) liver tissue by Tribulus terrestris (Linn.) (Zygophyllaceae) extract. Trop Biomed 23: 45–51.

  • Joshi D Mittal DK Shukla S Srivastav SK Dixit VA. (2017b). Curcuma longa Linn. extract and curcumin protect CYP 2E1 enzymatic activity against mercuric chloride-induced hepatotoxicity and oxidative stress: A protective approach. Exp Toxicol Pathol 69: 373–382.

  • Joshi D Srivastav SK Belemkar S Dixit VA. (2017a). Zingiber officinale and 6-gingerol alleviate liver and kidney dysfunctions and oxidative stress induced by mercuric chloride in male rats: A protective approach. Biomed Pharmacother 91: 645–655.

  • Júnior JG Coutinho HD Boris TC Cristo JS Pereira NL Figueiredo FG Cunha FA Aquino PE Nascimento PA Mesquita FJ Moreira PH Coutinho ST Souza IT Teixeira GC Ferreira NM Farina EO Torres CM Holanda VN Pereira VS Guedes MI. (2016). Chemical characterization and cytoprotective effect of the hydroethanol extract from Annona coriacea Mart. (Araticum). Pharmacognosy Res 8: 253–257.

  • Kavitha AV Jagadeesan G. (2006). Role of Tribulus terrestris (Linn.) (Zygophyllacea) against mercuric chloride induced nephrotoxicity in mice Mus musculus (Linn.). J Environ Biol 27: 397–400.

  • Kim W Kim DW Yoo DY Jung HY Kim JW Kim DW Choi JH Moon SM Yoon YS Hwang IK. (2015). Antioxidant effects of Dendropanax morbifera Léveille extract in the hippocampus of mercury-exposed rats. BMC Complement Altern Med 15: 247.

  • Kumar RBS Kar B Dolai N Karmakar I Bhattacharya S Haldar PK. (2015). Antitumor activity and antioxidant status of Streblus asper bark against Dalton’s ascitic lymphoma in mice. Interdiscip Toxicol 8: 125–130.

  • Lakshmi BV Sudhakar M Nireesha G. (2014). Modification of mercury-induced biochemical alterations by Triticum aestivum Linn in rats. Indian J Physiol Pharmacol 58: 423–436.

  • Lee J Lee SJ Lim KT. (2014). Preventive effects of ZPDC glycoprotein (24 kDa) on hepatotoxicity induced by mercury chloride in vitro and in vivo. Cell Biochem Funct 32: 520–529.

  • Lee JH Moniruzzaman M Yun H Lee S Park Y Bai SC. (2016). Dietary vitamin C reduced mercury contents in the tissues of juvenile olive flounder (Paralichthys olivaceus) exposed with and without mercury. Environ Toxicol Pharmacol 45: 8–14.

  • Linares AF Loikkanen J Jorge MF Soria RB Novoa AV. (2004). Antioxidant and neuroprotective activity of the extract from the seaweed Halimeda incrassata (Ellis) Lamouroux against in vitro and in vivo toxicity induced by methyl-mercury. Vet Hum Toxicol 46:1–5.

  • Liu W Xu Z Li H Guo M Yang T Feng S Xu B Deng Yu. (2017). Protective effects of curcumin against mercury-induced hepatic injuries in rats involvement of oxidative stress antagonism and Nrf2-ARE pathway activation. Hum Exp Toxicol 36: 949–966.

  • Liu W Xu Z Yang H Deng Y Xu B Wei Y. (2011). The protective effects of tea polyphenols and schisandrin B on nephrotoxicity of mercury. Biol Trace Elem Res 143: 1651–1665.

  • Moneim AEA. (2015). The neuroprotective effect of berberine in mercury-induced neurotoxicity in rats. Metab Brain Dis 30: 935–42.

  • Mostafalou S Abdollahi M. (2013). Environmental pollution by mercury and related health concerns: Renotice of a silent threat. Arh Hig Rada Toksikol 64: 179–181.

  • Necib Y Bahi A Zerizer S. (2013). Amelioration of mercuric chloride toxicity on rat liver. With argan oil and sodium selenite supplements. Int J Pharm Bio Sci 4 (B): 839–849.

  • Officioso A Tortora F and Manna C. (2016). Nutritional aspects of food toxicology: mercury toxicity and protective effects of olive oil hydroxytyrosol. J Nutr Food Sci 6: 539.

  • Othman MS Safwat G Aboulkhair M Abdel Moneim AE. (2014). The potential effect of berberine in mercury-induced hepatorenal toxicity in albino rats. Food Chem Toxicol 69: 175–181.

  • Owoeye O Arinola GO. (2017). A vegetable Launaea taraxacifolia mitigated mercuric chloride alteration of the microanatomy of rat brain. J Diet Suppl 14: 613–625.

  • Patel TA Rao MV. (2015). Ameliorative effect of certain antioxidants against mercury induced genotoxicity in peripheral blood lymphocytes. Drug Chem Toxicol 38: 408–414.

  • Patrick L. (2002). Mercury toxicity and antioxidants: part I: role of glutathione and alpha-lipoic acid in the treatment of mercury toxicity. Alt Med Rev 7: 456–471.

  • Pinho AI Oliveira CS Lovato FL Waczuk EP Piccoli BC Boligon AA Leite NF Coutinho HDM Posser T Da Rocha JBT Franco JL. (2017). Antioxidant and mercury chelating activity of Psidium guajava var. pomifera L. leaves hydroalcoholic extract. J Toxicol Environ Health A 80: 1301–1313.

  • Rafati-Rahimzadeh M Rafati-Rahimzadeh M Kazemi S Moghadamnia AA. (2014). Current approaches of the management of mercury poisoning: need of the hour. DARU J Pharm Sci 22: 46.

  • Rao MV Chinoy NJ Suthar MB Rajvanshi MI. (2001). Role of ascorbic acid on mercuric chloride-induced genotoxicity in human blood cultures. Toxicol In Vitro 15: 649–654.

  • Rao MV Sharma PS. (2001). Protective effect of vitamin E against mercuric chloride reproductive toxicity in male mice. Reprod Toxicol 15: 705–12.

  • Sabarathinam J Vishnu Riya V Gayathri R. (2016). Mercury poisoning and management: a systematic review. Asian J Pharm Clin Res 9: 8–12.

  • Sakaue M Mori N Okazaki M Kadowaki E Kaneko T Hemmi N Sekiguchi H Maki T Ozawa A Hara S Arishima K Yamamoto M. (2011). Vitamin K has the potential to protect neurons from methylmercury-induced cell death in vitro. J Neurosci Res 89: 1052–1058.

  • Sener G Sehirli O Tozan A Velioğlu-Ovunç A Gedik N Omurtag GZ. (2007). Ginkgo biloba extract protects against mercury(II)-induced oxidative tissue damage in rats. Food Chem Toxicol 45: 543–50.

  • Sharma MK Kumar M Kumar A. (2002). Ocimum sanctum aqueous leaf extract provides protection against mercury induced toxicity in Swiss albino mice. Indian J Exp Biol 40: 1079–1082.

  • Shettigar NB Das S Rao NB Rao SB. (2015). Thymol a monoterpene phenolic derivative of cymene abrogates mercury-induced oxidative stress resultant cytotoxicity and genotoxicity in hepatocarcinoma cells. Environ Toxicol 30: 968–980.

  • Shin YJ Kim JJ Kim YJ Kim WH Park EY Kim IY Shin HS Kim KS Lee EK Chung KH Lee BM Kim HS. (2015). Protective effects of quercetin against HgCl2-Induced nephrotoxicity in Sprague-Dawley rats. J Med Food 18: 524–534.

  • Singh KP Bhattacharya S Sharma P. (2014). Assessment of heavy metal contents of some Indian medicinal plants. American-Eurasian J Agric Environ Sci 14: 1125–1129.

  • Sobral-Souza CE Leite NF Cunha FAB Pinho AI Albuquerque RS Carneiro JNP Menezes IRA Costa JGM Franco JL Coutinho HDM. (2014). Cytoprotective effect against mercury chloride and bioinsecticidal activity of Eugenia jambolana Lam. Arabian J Chem 7: 165–170.

  • Sridhar MP Nandakumar N Rengarajan T Balasubramanian MP. (2013). Amelioration of mercuric chloride induced oxidative stress by Hygrophila auriculata (K.Schum) Heine via modulating the oxidant – antioxidant imbalance in rat liver. J Biochem Tech 4: 622–627

  • Sumathi T Shobana C Christinal J Anusha C. (2012). Protective effect of Bacopa monniera on methyl mercury-induced oxidative stress in cerebellum of rats. Cell Mol Neurobiol 32: 979–87.

  • Tamer M Saad M. (2013). Effect of curcumin on some heavy metals induced renal and testicular injuries in male rats. Egyptian J Hosp Med 53: 770–781.

  • Tan Q Liu Z Li H Liu Y Xia Z Xiao Y Usman M Du Y Bi H Wei L. (2018). Hormesis of mercuric chloride-human serum albumin adduct on N9 microglial cells via the ERK/MAPKs and JAK/STAT3 signaling pathways. Toxicol 408: 62–69.

  • Thiagarajan K Gamit N Mandal S Ayyathan DM Chandrasekaran R. (2018). Amelioration of methylmercury induced neural damage by essential oil of Selinum vaginatum (Edgew) C. B. Clarke. Pak J Pharm Sci 31: 399–404.

  • Vetvicka V Vetvickova J. (2009). Effects of glucan on immunosuppressive actions of mercury. J Med Food 12: 1098–104.

  • Yang D Tan X Lv Z Liu B Baiyun R Lu J Zhang Z. (2016). Regulation of Sirt1/Nrf2/TNF-α signaling pathway by luteolin is critical to attenuate acute mercuric chloride exposure induced hepatotoxicity. Scientific Reports 6: 37157.

  • Yang H Xu Z Liu W Deng Y Xu B. (2011). The protective role of procyanidins and lycopene against mercuric chloride renal damage in rats. Biomed Environ Sci 24: 550–559.

  • Yang H Xu Z Liu W Wei Y Deng Y Xu B. (2012). Effect of grape seed proanthocyanidin extracts on methylmercury-induced neurotoxicity in rats. Biol Trace Elem Res 147: 156–164.

  • Zhai Q Narbad A Chen W. (2015). Dietary strategies for the treatment of cadmium and lead toxicity. Nutrients 7: 552–571.

  • Zhang H Tan X Yang D Lu J Liu B Baiyun R Zhang Z. (2017). Dietary luteolin attenuates chronic liver injury induced by mercuric chloride via the Nrf2/NF-κB/P53 signaling pathway in rats. Oncotarget 8: 40982–40993.

  • Zhang Y Lu R Liu W Wu Y Qian H Zhao X Wang S Xing G. (2013). Hormetic effects of acute methylmercury exposure on GRP78 expression in rat brain cortex. Dose-Response 11: 109–120.

Journal information
Impact Factor

CiteScore 2018: 1.78

SCImago Journal Rank (SJR) 2018: 0.274
Source Normalized Impact per Paper (SNIP) 2018: 0.671

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 64 64 64
PDF Downloads 47 47 47