Ancillary vegetation measurements at ICOS ecosystem stations

Open access


The Integrated Carbon Observation System is a Pan-European distributed research infrastructure that has as its main goal to monitor the greenhouse gas balance of Europe. The ecosystem component of Integrated Carbon Observation System consists of a multitude of stations where the net greenhouse gas exchange is monitored continuously by eddy covariance measurements while, in addition many other measurements are carried out that are a key to an understanding of the greenhouse gas balance. Amongst them are the continuous meteorological measurements and a set of non-continuous measurements related to vegetation. The latter include Green Area Index, aboveground biomass and litter biomass. The standardized methodology that is used at the Integrated Carbon Observation System ecosystem stations to monitor these vegetation related variables differs between the ecosystem types that are represented within the network, whereby in this paper we focus on forests, grasslands, croplands and mires. For each of the variables and ecosystems a spatial and temporal sampling design was developed so that the variables can be monitored in a consistent way within the ICOS network. The standardisation of the methodology to collect Green Area Index, above ground biomass and litter biomass and the methods to evaluate the quality of the collected data ensures that all stations within the ICOS ecosystem network produce data sets with small and similar errors, which allows for inter-comparison comparisons across the Integrated Carbon Observation System ecosystem network.

Aires L.M.I., Pio C.A., and Pereira J.S., 2008. Carbon dioxide exchange above a Mediterranean C3/C4 grassland during two climatologically contrasting years. Global Change Biology, 14, 539-555.

Albaugh T.J., Bergh J., Lundmark T., Nilsson U., Stape J.L., Allen H.L., and Linder S., 2009. Do biological expansion factors adequately estimate stand-scale aboveground component biomass for Norway spruce? Forest Ecology and Management, 258, 2628-2637.

Alm J., Talanov A., Saarnio S., Silvola J., Ikkonen E., Aaltonen H., Nykänen H., and Martikainen P.J., 1997. Reconstruction of the carbon balance for microsites in a boreal oligotrophic pine fen, Finland. Oecologia, 110, 423-431.

Breda N.J.J., 2003. Ground-based measurements of leaf area index: a review of methods, instruments and current controversies. J. Experimental Botany, 54, 2403-2417.

Bubier J., Costello A., Moore T.R., Roulet N.T., and Savage K., 1993. Microtopography and methane flux in boreal peat-lands, northern Ontario, Canada. Canadian J. Botany, 71, 1056-1063.

Campbell G., 1977. An Introduction to Environmental Biophysics. Springer, New York.

Campbell G. and Gaylon S., 1986. Extinction coefficients for radiation in plant canopies calculated using an ellipsoidal inclination angle distribution. Agricultural and Forest Meteorology, 36(4), 317-321.

Chen J.M., 1996. Optically-based methods for measuring seasonal variation in leaf area index of boreal conifer forests. Agricultural and Forest Meteorology, 80,135-163

Ciais P., Soussana J. F., Vuichard N., Luyssaert S., Don A., Janssens I.A., Piao S.L., Dechow R., Lathière J., Maignan F., Wattenbach M., Smith P., Ammann C., Freibauer A., Schulze E.D., and the CARBOEUROPE Synthesis Team., 2010. The greenhouse gas balance of European grasslands. Biogeosciences Discussions, 7, 5997-6050.

Clymo R.S., 1970. The growth of Sphagnum: methods of measurement. J. Ecology, 58, 13-49.

Decagon Devices, Inc., 2010. AccuPAR PAR/LAI ceptometer model LP-80 Operator’s Manual Version 10.

Dittmann S., Thiessen E., and Hartung E., 2017. Applicability of different non-invasive methods for tree mass estimation: A review. Forest Ecology and Management, 398, 208-215.

Flanagan L.B., Wever L.A., and Carlson P.J., 2002. Seasonal and interannual variation in carbon dioxide exchange and carbon balance in a northern temperate grassland. Global Change Biology, 8, 599-615.

Frazer G.W., Trofymow J.A., and Lertzman K.P., 1997. A method for estimating canopy openness, effective leaf area index, and photosynthetically active photon flux density using hemispherical photography and computerized image analysis techniques. Information Report BC-X-373. Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, Victoria, BC.

Gonsamo A. and Pellikka P., 2009. The computation of foliage clumping index using hemispherical photography. Agric. Forest Meteorol., 149, 1781-1787.

Granath G. and Rydin H., 2013. The Global Sphagnum Production (GSP) Project: methods and protocol. Working document.

Granberg G., Mikkelä C., Sundh I., Svensson B.H., and Nilsson M., 1997. Sources of spatial variation in methane emission from mires in northern Sweden: A mechanistic approach in statistical modelling. Global Biogeochemical Cycles, 11, 135-150.

He Y., Guo X., and Wilmshurts J.F., 2007. Comparison of different methods for measuring leaf area index in a mixed grassland. Canadian J. Plant Sci., 87, 803-813

Heikkinen J.E.P., Maljanen M., Aurela M., Hargreaves K., Martikainen P.J., 2002. Carbon dioxide and methane dynamics in a sub-arctic peatland in northern Finland. Polar Research, 21, 49-62.

Herbert T.J., 1986. Calibration of fisheye lenses by inversion of area projections. Applied Optics, 25, 1875-1876.

IPCC, 2006. IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme (Eds H.S. Eggleston, L. Buendia, K. Miwa, T. Ngara, K. Tanabe). Published: IGES, Japan.

Jonasson S., 1983. The point intercept method for non-destructive estimation of biomass. Phytocoenologia, 11, 385-388.

Jonasson S., 1988. Evaluation of the point intercept method for the estimation of plant biomass. Oikos, 52, 101-106.

Jonckheere I., Fleck S., Nackaerts K., Muys B., Coppin P., Weiss M., and Baret F., 2004. Review of methods for in situ leaf area index determination: Part I. Theories, sensors and hemispherical photography. Agricultural and Forest Meteorology, 121, 19-35.

Jongen M., Santos Pereira J., Igreja Aires L.M., and Adrião Pio C., 2011. The effects of drought and timing of precipitation on the inter-annual variation in ecosystem-atmosphere exchange in a Mediterranean grassland. Agricultural and Forest Meteorology, 151, 595-606.

Leppälä M., Kukko-Oja K., Laine J., and Tuittila E.-S., 2008. Seasonal dynamics of CO2 exchange during primary succession of boreal mires as controlled by phenology of plants. Ecoscience, 15, 460-471

Liang X., Kankare V., Hyyppä J., Wang Y., Kukko A., Haggrén H., Yu X., Kaartinen H., Jaakkola A., Guan F., Holopainen M., and Vastaranta M., 2016. Terrestrial laser scanning in forest inventories. ISPRS J. Photogrammetry and Remote Sensing, 115, 63-77.

Maanavilja L., Riutta T., Aurela M., Pulkkinen M., Laurila T., and Tuittila E.-S., 2011. Spatial variation in CO2 exchange at a northern aapa mire. Biogeochemistry, 104, 325-345.

Malmer N., Johansson T., Oslrud M., and Christensen T., 2005. Vegetation, climatic changes and net carbon sequestration in a North-Scandinavian subarctic mire over 30 years. Global Change Biology, 11, 1895-1909.

‘t Mannetje L., 2000. Measuring biomass in grasslands. Chapter 7 in: Field and laboratory methods for grassland and animal production research (Eds L. ‘t Mannetje and R.M. Jones). Published by Wallingford, Oxon, UK; New York, NY, USA: CABI Pub.

Meier U., Bleiholder H., Buhr L. Feller C., Hacks H., Hess M., Lancashire P.D., Schnock U., Stauss R., van den Boom T.,Weber E., and Zwerger P., 2009. The BBCH system to coding the phenological growth stages of plants - history and publications. J. Kulturpflanzen, 61, 41-52.

Melillo J.M., McGuire A.D., Kicklighter D.W., Moore B., Vorosmatry C.J., and Schloss A.L., 1993. Global climate change and terrestrial net primary productivity. Nature, 363, 234-240.

Muukkonen P., 2009. Generalized allometric volume and biomass equations for some tree species in Europe, 2009. European J. Forest Res., 126, 2-14.

Muukkonen P. and Mäkipää R., 2006. Biomass equations for European trees: addendum. Silva Fennica, 40, 763-773.

Rich P.M., 1990. Characterizing plant canopies with hemispherical photographs. Remote Sensing Reviews, 5, 13-29.

Riutta T., Laine J., Aurela M., Rinne J., Vesala T., Laurila T., Haapanala S., Pihlatie M., and Tuittila E.-S., 2007b. Spatial variation in plant community functions regulates carbon gas dynamics in a boreal fen ecosystem. Tellus, 59B, 838-852.

Riutta T., Laine J., and Tuittila E.-S., 2007a. Sensitivity of CO2 exchange of fen ecosystem components to water level variation. Ecosystems, 10, 718-733.

Rydin H. and Jeglum J.K., 2013. The Biology of Peatlands. Oxford University Press.

Sala O.E. and Austin A.T., 2000. Methods of estimating above-ground net primary productivity. In: Methods in ecosystem science (Eds O.E. Sala, R.B. Jackson, H.A. Mooney, R.W. Howarth). Springer, New York, NY, USA.

Scurlock J.M.O., Johnson K., and Olson R.J., 2002. Estimating NPP from grassland biomass dynamics measurements. Global Change Biology, 8, 736-753.

Singh J.S., Lauenroth W.K., and Steinhorst R.K., 1975. Review and assessment of various techniques for estimating net aerial primary production in grasslands from harvest data. Botanical Review, 41, 181-232.

Soussana J.F., Allard V., Pilegaard K., Ambus P., Amman C., Campbell C., Ceschia E., Clifton-Brown J., Czobel S., Domingues R., Flechard C., Fuhrer J., Hensen A., Horvath L., Jones M., Kasper G., Martin C., Nagy Z., Neftel A., Raschi A., Baronti S., Rees R.M., Skiba U., Stefani P., Manca G., Sutton M., Tuba Z., and Valentini R., 2007. Full accounting of the greenhouse gas (CO2, N2O, CH4) budget of nine European grassland sites. Agric., Ecosys. Environ., 121, 121-134.

Walter J.M., Fournier R., Soudani K., and Meyer E., 2003. Integrating clumping effects in forest canopy structure: an assessment through hemispherical photographs. Canadian J. Remote Sensing, 29, 388-410.

Warren W.G. and Olsen P.F., 1964. A line-intersect technique for assessing logging waste. Forest Sci., 10, 267-276.

Webb N., Nichol C., Wood J., and Potter E., 2008. User Manual for the SunScan Canopy Analysis System type SST, Version 2.0. Cambridge U.K.: Delta-T Devices Ltd pp.83.

Weiss M., Baret F., Smith G.J., Jonckheere I., and Coppin P., 2004. Review of methods for in situ leaf area index (LAI) determination Part II. Estimation of LAI, errors and sampling. Agricultural Forest Meteorology, 121, 1873-2240.

Whitmore T., Brown N., Swaine M., Kennedy D., Goodwin-Bailey C., and Gong W., 1993. Use of hemispherical photographs in forest ecology: Measurement of gap size and radiation totals in a Bornean tropical rain forest. J. Tropical Ecology, 9, 131-151.

Wilson D., Alm J., Riutta T., Laine J., Byrne K.A., Farrell E.P., and Tuittila E-.S., 2007. A high resolution green area index for modelling the seasonal dynamics of CO2 exchange in peatland vascular plant communities. Plant Ecology, 190, 37-51.

Wirth C., and Schumacher J., and Schulze E.-D., 2009. Generic biomass functions for Norway spruce in Central Europe – a meta-analysis approach toward prediction and uncertainty estimation. Tree Physiology, 24, 121-139.

Wohlfahrt G., Sapinsky S., Tappeiner U., and Cernusca A., 2001. Estimation of plant area index of grasslands from measurements of canopy radiation profiles. Agric. Forest Meteorology, 109, 1-12.

Woodall C. and Williams M., 2005. Sampling protocol, estimation, and analysis procedures for the down woody materials indicator of the FIA program. Gen. Tech. Rep., NC-256. St. Paul, MN: U.S. Department of Agriculture, Forest Service, North Central Research Station. pp47.

Zianis D., Muukkonen P., Makipaa R., and Mencuccini M., 2005. Biomass and stem volume equations for tree species in Europe. Silva Fennica Monographs, 4, 5-63.

International Agrophysics

The Journal of Institute of Agrophysics of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2017: 1.242
5-year IMPACT FACTOR: 1.267

CiteScore 2017: 1.38

SCImago Journal Rank (SJR) 2017: 0.435
Source Normalized Impact per Paper (SNIP) 2017: 0.849


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 754 754 62
PDF Downloads 136 136 20