Soil sampling and preparation for monitoring soil carbon

Open access

Abstract

There is an urgent need for standardized monitoring of existing soil organic carbon stocks in order to accurately quantify potential negative or positive feedbacks with climate change on carbon fluxes. Given the uncertainty of flux measurements at the ecosystem scale, obtaining precise estimates of changes in soil organic carbon stocks is essential to provide an independent assessment of long-term net ecosystem carbon exchange. Here we describe the standard procedure to monitor the soil organic carbon stocks within the footprint of an eddy covariance flux tower, as applied at ecosystem stations of the Integrated Carbon Observation System. The objectives are i) to ensure comparability between sites and to be able to draw general conclusions from the results obtained across many ecosystems and ii) to optimize the sampling design in order to be able to prove changes in time using a reduced number of samples. When sampling a given site at two periods, the objective is generally to assess if changes occurred in time. The changes that can be detected (i.e., demonstrated as statistically significant) depend on several parameters such as the number of samples, the spatial sampling design, and the inherent within-site soil variability. Depending on these parameters, one can define the ‘minimum detectable change’ which is the minimum value of changed that can be statistically proved. Using simulation studies, we address the trade-off between increasing the number of samples and getting lower minimum detectable changes of soil organic carbon stocks.

Arrouays D., Grundy M.G., Hartemink A.E., Hempel J.W., Heuvelink G.B.M., Hong S.Y., Lagacherie P., Lelyk G., McBratney A.B., McKenzie N.J., Mendonça-Santos M.D., Minasny B., Montanarella L., Odeh I.O.A., Sanchez P.A., Thompson J.A., and Zhang G.-L., 2014. GlobalSoilMap: towards a fine-resolution global grid of soil properties. Advances in Agronomy, 125, 93-134.

Arrouays D., Marchant B.P., Saby N.P.A., Meersmans J., Orton T.G., Martin M.P., Bellamy P.H., Lark R.M., and Kibblewhite M., 2012. Generic issues on broad scale soil monitoring schemes: A review. Pedosphere, 22, 456-469.

Arrouays D. and Pélissier P., 1994a. Changes in carbon storage in temperate humic loamy soils after forest clearing and continuous corn cropping in France. Plant Soil, 160, 215-223.

Arrouays D. and Pélissier P., 1994b. Modeling carbon storage profiles in temperate forest humic loamy soils of France. Soil Science, 157, 185-192.

Batjes N.H., 1996. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci., 47, 151-163.

Bellamy P.H., Loveland P.J., Bradley R.I., Lark R.M., and Kirk G.J.D., 2005. Carbon losses from all soils across England and Wales 1978-2003. Nature, 437, 245-248.

Brus D.J. and de Gruijter J.J., 2011. Design-based Generalized Least Squares estimation of status and trend of soil properties from monitoring data. Geoderma, 164, 172-180.

de Gruijter J., Brus D.J., Bierkens M.F.P., and Knotters M., 2006. Sampling for Natural Resource Monitoring. Springer-Verlag.

Dignac M.F., Derrien D., Barré P., Barot S., Cécillon L., Chenu C., Chevallier T., Freschet G.T., Garnier P., Guenet B., and Hedde M., 2017. Increasing soil carbon storage: mechanisms, effects of agricultural practices and proxies. A review. Agronomy for Sustainable Development, 37, 14.

Don A., Schumacher J., Scherer-Lorenzen M., Scholten T., and Schultze E-D., 2007. Spatial and vertical variation of soil carbon at two grassland sites – Implications for measuring soil carbon stocks. Geoderma, 141, 272-282.

Ellert B.H. and Bettany J.R., 1995. Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Can. J. Soil Sci., 75, 529-38.

FAO, 2014.World reference base for soil resources. International soil classification system for naming soils and creating legends for soil maps. FAO, Roma, Italy.

Federer C.A., 1983. Nitrogen mineralization and nitrification: Depth variation in four New England forest soils. Soil Sci. Soc. Am. J., 47, 1008-1014.

Gorham E., 1991. Northern peatlands: role in the carbon cycle and probable response to global warming. Ecological Appl., 1(2), 182-195.

Guo L.B. and Gifford R., 2002. Soil carbon stocks and land use change: A meta analysis. Global Change Biology, 8, 345-360.

International Standard ISO-11074-2:1998 (Soil quality – Vocabulary – Part 2: terms and definitions relating to sampling).

ISO, 1995. Soil quality - Determination of organic and total carbon after dry combustion (elementary analysis).

ISO, 1998. ISO 11279. Soil quality – Determination of dry bulk density.

ISO, 1998. ISO 11272. Soil quality – Determination of dry bulk density.

ISO, 2014. ISO 10693. Soil quality – Determination of carbonate content – Volumetric method.

IUSS Working Group WRB, 2015. World Reference Base for Soil Resources 2014, update 2015, International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.

Kibblewhite M.G., Jones R.J.A., Montanarella L., Baritz R., Huber S., Arrouays D., Micheli E., and Stephens M., (Eds). 2008. Environmental Assessment of Soil for Monitoring: Volume VI Soil Monitoring System for Europe. EUR 23490 EN/6, Office for the Official Publications of the European Communities, Luxembourg, 188pp.

Krüger J.-P., Alewell C., Minkkinen K., Szidat S., and Leifeld J., 2015. Calculating carbon changes in peat soils drained for forestry with four different profile-based methods. For. Ecol. Manag., 381, 29-36, 10.1016/j.foreco.2016.09.006.

Lal R., 2004. Soil carbon sequestration impacts on global climate change and food security. Science, 304, 1623-1627.

Lal R., 2010. Managing soils and ecosystems for mitigating anthropogenic carbon emissions and advancing global food security. BioScience, 60, 708-721.

Lal R., 2016. Beyond COP 21: potential and challenges of the “4 per Thousand” initiative. J. Soil Water Conservation, 71, 20A-25A.

Lark R.M., 2012. Some considerations on aggregate sample supports for soil inventory and monitoring. European J. Soil Science, 63, 86-95.

Le Quéré C., Andrew R.M., Canadell J.G., Sitch S., Ivar Korsbakken J., Peters G.P., Manning A.C., Boden T.A., Tans P.P., Houghton R.A., Keeling R.F., Alin S., Andrews O.D., Anthoni P., Barbero L., Bopp L., Chevallier F., Chini L.P., Ciais P., Currie K., Delire C., Doney S.C., Friedlingstein P., Gkritzalis T., Harris I., Hauck J., Haverd V., Hoppema M., Klein Goldewijk K., Jain A.K., Kato E., Körtzinger A., Landschützer P., Lefèvre N., Lenton A., Lienert S., Lombardozzi D., Melton J.R., Metzl N., Millero F., Monteiro P.M.S., Munro D.R., Nabel J.E.M.S., Nakaoka S.-I., O’Brien K., Olsen A., Omar A.M., Ono T., Pierrot D., Poulter B., Rödenbeck C., Salisbury J., Schuster U., Schwinger J., Séférian R., Skjelvan I., Stocker B.D., Sutton A.J., Takahashi T., Tian H., Tilbrook B., Van Der Laan-Luijkx I.T., Van Der Werf G.R., Viovy N., Walker A.P., Wiltshire A.J., and Zaehle S., 2016. Global Carbon Budget 2016. Earth System Science Data, 8, 605-649.

Loescher H.W., Law B.E., Mahrt L., Hollinger D.Y., Campbell J., and Wofsy S.C., 2006. Uncertainties in, and interpretation of, carbon flux estimates using the eddy covariance technique. J. Geophysical Res. Atmospheres, 11(D121), DOI: 10.1029/2005JD006932.

Minasny B., Malone B.P., McBratney A.B., Angers D.A., Arrouays D., Chambers A., Chaplot V., Chen Z.S., Cheng K., Das B.S., Field D.J., Gimona A., Hedley C.B., Hong S.Y., Mandal B., Marchant B.P., Martin M.P., McConkey B.G., Mulder V.L., O’Rourke S., Richer-de-Forges A.C., Odeh I., Padarian J., Paustian K., Pan G., Poggio L., Savin I., Stolbovoy V., Stockmann U., Sulaeman Y., Tsui C-C., Vågen T.-G., van Wesemael B., and Winowiecki L., 2017. Soil carbon 4 per mille. Geoderma, 292, 59-86.

Morvan X., Saby N.P.A., Arrouays D., Le Bas C., Jones R.J.A., Verheijen F.G.A., Bellamy P.H., Stephens M., and Kibblewhite M.G., 2008. Soil monitoring in Europe: A review of existing systems and requirements for harmonization. Sci. Total Environ., 391, 1-12.

NRCS-USDA, 2012. Field Book for Describing and Sampling Soils. Version 3.0. National Soil Survey Center. Natural Resources Conservation Service. U.S. Department of Agriculture, September 2012.

Orton T., Saby N.P.A., Arrouays D., Walter C., Lemercier B., Schvartz C., and Lark R.M., 2012a. Spatial prediction of soil organic carbon from data on large and variable spatial supports. I. Inventory and mapping. Environmetrics, 23, 129-147.

Orton T., Saby N.P.A., Arrouays D., Walter C., Lemercier B., Schvartz C., and Lark R.M., 2012b. Spatial prediction of soil organic carbon from data on large and variable spatial supports. ΙΙ. Mapping temporal change. Environmetrics, 23, 148-161.

Paustian K., Lehmann J., Ogle S., Reay D., Robertson G.P., and Smith P., 2016. Climate-smart soils. Nature, 532, 49-57.

Post W.M. and Kwon K.C., 2000. Soil carbon sequestration and land-use change: Processes and potential. Global Change Biology, 6, 317-327.

Saby N.P.A., Arrouays D., Antoni V., Lemercier B., Follain S., Walter C., and Schvartz C., 2008a. Changes in soil organic carbon in a mountainous French region, 1990-2004. Soil Use Manage., 24, 254-262.

Saby N.P.A., Bellamy P.H., Morvan X., Arrouays D., Jones R.J.A., Verheijen F.G.A., Kibblewhite M.G., Verdoodt A., Berényiüveges J., Freudenschuß A., and Simota C., 2008b. Will European soil-monitoring networks be able to detect changes in topsoil organic carbon content? Glob. Change Biol., 14, 2432-2442.

Sanderman J., Hengl T., and Fiske G.J., 2017. Soil carbon debt of 12,000 years of human land use. P.N.A.S., 114, 9575-9580.

Saunders M., Dengel S., Kolari P., et al., 2018. Assessing the impacts of site characteristics, management, disturbance and lateral fluxes on greenhouse gas dynamics. Int. Agrophys., 32, 457-469.

Schrumpf M., Schulze E.D., Kaiser K., and Schumacher J., 2011. How accurately can soil organic carbon stocks and stock changes be quantified by soil inventories? Biogeosciences, 8(5), 1193-1212.

Smith P., 2004. How long before a change in soil organic carbon can be detected? Global Change Biology, 10, 1878-1883.

Smith P., Davies C.A., Ogle S., Zanchi G., Bellarby J., Bird N., Boddey R.M., McNamara N.P., Powlson D., Cowie A., and Noordwijk M., 2012. Towards an integrated global framework to assess the impacts of land use and management change on soil carbon: current capability and future vision. Global Change Biology, 18, 2089-2101.

Smith P., Martino D., Cai Z., Gwary D., Janzen H., Kumar P., McCarl B., Ogle S., O’Mara F., Rice C., Scholes B., Sirotenko O., Howden M., McAlliste T., Pan, G., Romanenkov V., Schneider U., Towprayoon S., Wattenbach M., and Smith J., 2008. Greenhouse gas mitigation in agriculture. Philosophical Trans. Royal Society B, 363, 789-813.

Stockmann U., Adams M.A., Crawford J.W., Field D.J., Henakaarchchi N., Jenkins M., Minasny B., McBratney A.B., de Remy de Courcelles V., Singh K., Wheeler I., Abbott L., Angers D.A., Baldock J., Bird M., Brookes P.C., Chenu C., Jastrow J.D., and Zimmermann M., 2013. The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric., Ecosys. Environ., 164, 80-99.

Stockmann U., Padarian J., McBratney A.B., Minasny B., de Brogniez D., Montanarella L., Hong S.Y., Rawlins B.G., and Field D.J., 2015. Global soil organic carbon assessment. Global Food Security, 6, 9-16.

van Wesemael B., Paustian K., Andrén O., Cerri C.E.P., Dodd M., Etchevers J., Goidts E., Grace P., Kätterer T., McConkey B.G., Ogle S., Pan G.X., and Siebner C., 2011. How can soil monitoring networks be used to improve predictions of organic carbon pool dynamics and CO2 fluxes in agricultural soils? Plant Soil, 338, 247-259.

Wendt J.W. and Hauser S., 2013. An equivalent soil mass procedure for monitoring soil organic carbon in multiple soil layers. European J. Soil Sci., 64, 58-65.

International Agrophysics

The Journal of Institute of Agrophysics of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2017: 1.242
5-year IMPACT FACTOR: 1.267

CiteScore 2017: 1.38

SCImago Journal Rank (SJR) 2017: 0.435
Source Normalized Impact per Paper (SNIP) 2017: 0.849

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 81 81 39
PDF Downloads 107 107 67