Soil-meteorological measurements at ICOS monitoring stations in terrestrial ecosystems

Open access

Abstract

The Integrated Carbon Observation System is a pan-European research infrastructure providing standardized, long-term observations of greenhouse gas concentrations and earth-atmosphere greenhouse gas interactions. The terrestrial component of Integrated Carbon Observation System comprises a network of monitoring stations in terrestrial ecosystems where the principal activity is the measurement of ecosystem-atmosphere fluxes of greenhouse gases and energy by means of the eddy covariance technique. At each station a large set of ancillary variables needed for the interpretation of observed fluxes and for process studies is additionally monitored. This set includes a subset of variables that describe the thermal and moisture conditions of the soil and which are here conveniently referred to as soil-meteorological variables: soil temperature, volumetric soil water content, water table depth, and soil heat flux density. This paper describes the standard methodology that has been developped for the monitoring of these variables at the ecosystem stations.

Bristow K.L., Kluitenberg G.J., and Horton R., 1994. Measurement of soil thermal properties with a dual-probe heat-pulse technique. Soil Sci. Soc. Am. J., 58, 1288-1294.

Campbell G.S. and Norman J.M., 1998. An Introduction to Environmental Biophysics. Springer-Verlag, New York, USA.

Campbell Scientific, 2012. CS650 and CS655 Water Content Reflectometers Instruction Manual. Revision: 10/12.

Cobos D.R. and Baker J.M., 2003. In situ measurement of soil heat flux with the gradient method. Vadose Zone J., 2, 589-594.

Dane J.H. and Topp G.C., 2002. Methods of Soil Analysis: Part 4 Physical Methods. Soil Science Society of America, Inc., Madison, USA.

de Vries D.A., 1963. Thermal properties of soils. In: Physics of Plant Environment (Ed. W.R. van Wijk). North-Holland Publishing Company, Amsterdam, The Netherlands.

FAO, 2006. Guidelines for Soil Profile Description and Classification (Eds R. Jahn, H.-P. Blume, V.B. Asio, O. Spaargaren, P. Schad) (Contributors R. Langohr, R. Brinkman, F.O. Nachtergaele and P. Krasilnikov), FAO, Rome.

Foken T., 2008. The energy balance closure problem - an overview. Ecol. Appl., 18, 1351-1367.

Freeman L.A., Carpenter M.C., Rosenberry D.O., Rousseau J.P., Unger R., and McLean J.S., 2004. Use Of submersible pressure transducers in water-resources investigations. Chapter A of Book 8, Instrumentation, Section A, Instruments for Measurement of Water Level. Techniques of Water-Resources Investigations 8-A3, US Geological Survey.

Gerten D., Schaphoff S., and Lucht W., 2007. Potential future changes in water limitation of the terrestrial biosphere. Climatic Change, 80, 277-299.

Gielen B., Acosta M., Altimir N., et al., 2018. Ancillary vegetation measurements at ICOS ecosystem stations. Int. Agrophys., 32, 645-664.

Halliwell D.H. and Rouse W.R., 1987. Soil heat flux in permafrost-characteristics and accuracy of measurement. J. Climatol., 7, 571-584.

Heitman J.L., Xiao X., Horton R., and Sauer T.J., 2008. Sensible heat measurements indicating depth and magnitude of subsurface soil water evaporation. Water Resour Res., 44, W00D05.

Howard D.M. and Howard P.J.A., 1993. Relationships between CO2 evolution, moisture content and temperature for a range of soil types. Soil Biol Biochem., 25, 1537-546.

Huang P.M., Li Y., and Sumner M.E., 2011. Handbook of Soil Sciences: Properties and Processes. Second Edition. CRC Press, Boca Raton, USA.

Hukseflux, 2011. HFP01-SC Self Calibrating Heat Flux Sensor - User Manual. v0811.

IGRAC, 2008. Guideline on: Groundwater monitoring for general reference purposes. Editor: Gerrit Jousma, IGRAC, The Netherlands Report nr. GP 2008-1.

ISO, 2001. ISO-11461:2001. Soil quality — Determination of soil water content as a volume fraction using coring sleeves — Gravimetric method. International Organization for Standardization. Geneva, Switzerland.

Jarvis P. and Linder S., 2000. Constraints to growth of boreal forests. Nature, 405, 904-905.

Jungqvist G., Oni S.K., Teutschbein C., and Futter M.N., 2014. Effect of climate change on soil temperature in Swedish boreal forests. PloS ONE, 9, e93957.

Kellner E., 2001. Surface energy fluxes and control of evapotranspiration from a Swedish Sphagnum mire. Agr Forest Meteorol, 110, 101-123.

Kurylyk B.L., MacQuarrie K.T.B., and McKenzie J.M., 2014. Climate change impacts on groundwater and soil temperatures in cold and temperate regions: Implications, mathematical theory, and emerging simulation tools. Earth Sci. Rev., 138, 313-334.

Laurila T., Aurela M., and Tuovinen J.P., 2012. Eddy covariance measurements over wetlands. In: Eddy Covariance (Eds M. Aubinet, T. Vesala, D. Papale). Springer Atmospheric Sciences. Springer, Dordrecht, The Netherlands.

McDaniel P.A, 2006. Anaerobic processes. In: Encyclopedia of Soil Science, Volume 1 Second edition. (Ed. R. Lal). Taylor and Francis, Boca Raton, USA.

Metzger S., 2018. Surface-atmosphere exchange in a box: Making the control volume a suitable representation for in-situ observations. Agr. For Meteorol., 255, 68-80.

Mikkelä C., Sundh I., Svensson B.H., and Nilsson M., 1995. Diurnal variation in methane emission in relation to the water table, soil temperature, climate and vegetation cover in a Swedisch acid mire. Biogeochemistry, 28, 93-114.

Muńoz-Carpena R., Shukla S., and Morgan K., 2010. Field devices for monitoring soil water content. SR-IWM-2. Southern Regional Water Program.

Nagare R.M., Schincariol R.A., Quinton W.L., and Hayashi M., 2011. Laboratory calibration of time domain reflectometry to determine moisture content in undisturbed peat samples. Eur. J. Soil Sci., 62, 505-515.

Ochsner T.E., Sauer T.J, and Horton R., 2006. Field tests of the soil heat flux plate method and some alternatives. Agron. J., 98, 1005-1014.

Op de Beeck M., Sabbatini S., and Papale D., 2017a. ICOS Ecosystem Instructions for Soil Meteorological Measurements (TS, SWC, G) (Version 20180123). ICOS Ecosystem Thematic Centre. https://doi.org/10.18160/1a28-gex6

Op de Beeck M., Sabbatini S., and Papale D., 2017b. ICOS Ecosystem Instructions for Water Table Depth Measurements (Version 20180130). ICOS Ecosystem Thematic Centre. https://doi.org/10.18160/k9vq-k8d0

Peng X., Wang Y., Heitman J., Ochsner T., Horton R., and Ren T., 2017. Measurement of soil-surface heat flux with a multi-needle heat-pulse probe. Eur. J. Soil Sci., 68, 336-344.

Pregitzer K.S., King J.S., Burton A.J., and Brown S.E., 2000. Responses of tree fine roots to temperature. New Phytol., 147, 105-115.

Quinones H., Ruelle P., and Nemeth I., 2003. Comparison of three calibration procedures for TDR soil moisture sensors. Irrig. Drain, 52, 203-217.

Sauer T.J. and Horton R., 2005. Soil heat flux. In: Micrometeorology in Agricultural Systems, Agronomy Monographs 47 (Eds J.L. Hatfield, J.M. Baker). American Society of Agronomy, Madison, USA.

Schaufler G., Kitzler B., Schindlbacher A., Skiba U., Sutton M.A., and Zechmeister-Boltenstern S., 2010. Greenhouse gas emissions from European soils under different land use: effects of soil moisture and temperature. Eur. J. Soil Sci., 61, 683-696.

Sinclair K. and Pitz C., 2010. Standard Operating Procedure for the use of Submersible Pressure Transducers During Groundwater Studies Version 1.0. - Washington State Department of Ecology - Environmental Assessment Program.

Smith K.A, Ball T., Conen F., Dobbie K.E., Massheder J., and Rey A., 2003. Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. Eur. J. Soil Sci., 54, 779-791.

Stoy P.C., Mauder M., Foken T., Marcolla B., Boegh E., Ibrom A., Arain M.A., Arneth A., Aurela M., Bernhofer C., Cescatti C., Dellwik E., Duce P., Gianelle D., van Gorsel E., Kiely G., Knohl A., Margolis H., McCaughey H., Merbold L., Montagnani L., Papale D., Reichstein M., Saunders M., Serrano-Ortiz P., Sottocornola M., Spano D., Vaccari F., and Varlagin A., 2013. A data-driven analysis of energy balance closure across FLUXNET research sites: The role of landscape scale heterogeneity. Agr. Forest Meteorol., 171-172, 137-152.

von Arnold K., Nilsson M., Hanell B., Weslien P., and Klemedtsson L., 2005. Fluxes of CO2, CH4 and N2O from drained organic soils in deciduous forests. Soil Biol. Biochem., 37, 1059-1071.

Wilson K., Goldstein A., Falge E., Aubinet M., Baldocchi D., Berbigier P., Bernhofer C., Ceulemans R., Dolman H., Field C., Grelle A., Ibrom A., Law B.E., Kowalski A., Meyers T., Moncrieff J., Monson R., Oechel W., Tenhunen J., Valentini R., and Verma S., 2002. Energy balance closure at FLUXNET sites. Agr. Forest Meteorol., 113, 223-243.

WMO, 2008. Guide to Meteorological Instruments and Method of Observation. WMO-No 8, Geneva.

Xiao X., Heitman J.L., Sauer T.J., Ren T., and Horton R., 2014. Sensible heat balance measurements of soil water evaporation beneath a maize canopy. Soil Sci. Soc. Am. J., 78, 361-368.

Zhang X., Lu S., Heitman J.L., Horton R., and Ren T., 2012. Measuring subsurface soil-water evaporation with an improved heat-pulse probe. Soil Sci. Soc. Am. J., 76, 876-879.

International Agrophysics

The Journal of Institute of Agrophysics of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2017: 1.242
5-year IMPACT FACTOR: 1.267

CiteScore 2017: 1.38

SCImago Journal Rank (SJR) 2017: 0.435
Source Normalized Impact per Paper (SNIP) 2017: 0.849

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 193 193 45
PDF Downloads 115 115 13