Radiation measurements at ICOS ecosystem stations

Open access


Solar radiation is a key driver of energy and carbon fluxes in natural ecosystems. Radiation measurements are essential for interpreting ecosystem scale greenhouse gases and energy fluxes as well as many other observations performed at ecosystem stations of the Integrated Carbon Observation System (ICOS). We describe and explain the relevance of the radiation variables that are monitored continuously at ICOS ecosystem stations and define recommendations to perform these measurements with consistent and comparable accuracy. The measurement methodology and instruments are described including detailed technical specifications. Guidelines for instrumental set up as well as for operation, maintenance and data collection are defined considering both ICOS scientific objectives and practical operational constraints. For measurements of short-wave (solar) and long wave (infrared) radiation components, requirements for the ICOS network are based on available well-defined state-of-the art standards (World Meteorological Organization, International Organization for Standardization). For photosynthetically active radiation measurements, some basic instrumental requirements are based on the performance of commercially available sensors. Since site specific conditions and practical constraints at individual ICOS ecosystem stations may hamper the applicability of standard requirements, we recommend that ICOS develops mid-term coordinated actions to assess the effective level of uncertainties in radiation measurements at the network scale.

Albrecht B. and Cox S.K., 1977. Procedures for improving pyrgeometer performance. J. Applied Meteorol., 16, 188-197.

Augustine J.A., DeLuisi J.J., and Long C.N., 2000. SURFRAD – A National Surface Radiation Budget Network for Atmospheric Research. Bulletin of the American Meteorological Soc., 81, 2341–2357.

Amesz J., 1987. Photosynthesis. Elsevier, Amsterdam.

Baker N., 1996. Photosynthesis and the Environment. Kluwer Academic, Netherlands.

Barber J., 1992. The Photosystems: Structure, Function and Molecular Biology, Elsevier, Amsterdam.

Bird R.E. and Riordan C., 1986. Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the Earth’s surface for cloudless atmospheres. J. Climate and Applied Meteorology, 25, 87-97.

Blanc P., et al., 2014. Direct normal irradiance related definitions and applications: the circumsolar issue. Solar Energy, 110, 561-577. http://dx.doi.org/10.1016/j.solener.

Blonquist Jr. J.M., Tanner B.D., and Bugbee B., 2009. Evaluation of measurement accuracy and comparison of two new and three traditional net radiometers. Agric. Forest Meteorol., 149, 1709-1721.

Bonan G.B., 2008. Ecological Climatology. New York: Cambridge University Press.

Brotzge J.A. and Duchon C.E., 2000. A field comparison among a domeless net radiometer, two four-component net radiometers, and a domed net radiometer. J. Oceanic and Atmospheric Technology, 17, 1569-1582.

Dämmgen U., Grünhage L., and Schaaf S., 2005. The precision and spatial variability of some meteorological parameters needed to determine vertical fluxes of air constituents. Landbauforschung Völkenrode, 55, 29-37

Emerson R., 1958. The quantum yield of photosynthesis. Annuual Review of Plant Physiology, 9, 1-24.

Farquhar G.D. and Roderick M L., 2003. Pinatubo, diffuse light, and the carbon cycle. Science, 299, 1997-1998.

Foken T., 2008a. Micrometeorology. Berlin: Springer-Verlag.

Foken T., 2008b. The energy balance closure problem – an overview. Ecological Applications, 18, 1351-1367.

Fröhlich C., 1991. History of solar radiometry and the World Radiometric Reference. Metrologia, 28, 111-115.

Govindjee (Ed.), 1982. Photosynthesis, Vol. I – Energy Conversion by Plants and Bacteria. In: Cell Biology: A Series of Monographs. Buetow DE, Cameron IL, Padilla GM and Zimmerman AM (Series eds). Academic Press, New York (ISBN: 0122943015).

Gu L., Baldocchi D., Verma S.B., Black T.A., Vesala T., Falge E., and Dowty P.R., 2002. Advantages of diffuse radiation for terrestrial ecosystem productivity. J. Geophysysical Research, 107(D6), 10.1029/2001JD001242.

Gu L., Baldocchi D., Wofsy S.C., Munger J.W., Michalsky J.J., Urbanski S.P., and Boden T.A., 2003. Response of a deciduous forest to the Mount Pinatubo eruption: Enhanced photosynthesis. Science, 299, 2035-2038.

Gueymard A.C., 2018. A reevaluation of the solar constant based on a 42-year total solar irradiance time series and a reconciliation of spaceborne observations. Solar Energy, 168, 2-9. https://doi.org/10.1016/j.solener.2018.04.001

Ibrom A., Jarvis P.G., Clement R.B., Morgenstern K., Oltchev A., Medlyn B., Wang Y.P., Wingate L., Moncrieff J., and Gravenhorst G., 2006. A comparative analysis of simulated and observed photosynthetic CO2 uptake in two coniferous forest canopies. Tree Physiology, 26(7), 845-864.

International Organization for Standardization, 1990a. Solar Energy-Specification and Classification of Instruments for Measuring Hemispherical Solar and Direct Solar Radiation. ISO 9060:1990.

International Organization for Standardization, 1990b. Solar Energy – Field Pyranometers – Recommended Practise for Use. ISO/TR 9901.

International Organization for Standardization, 1992. Solar Energy-Calibration of field pyranometers by comparison to a reference pyranometer. ISO 9847:1992.

International Organization for Standardization, 1993. Solar energy – Calibration of a pyranometer using a pyrheliometer. ISO 9846:1993.

International Organization for Standardization, 1995. Guide to the Expression of Uncertainty of Measurement, Geneva.

International Organization for Standardization, 2008. Quantities and units - Part 7: Light. ISO 80000-7:2008.

ISO 9488, 1999. Solar Energy: Vocabulary.

Johnson F.S., 1954. The solar constant. J. Meteorol., 11(6), 432-439, https://doi.org/10.1175/1520-0469(1954)011<0431:TSC>2.0.CO;2

Knohl A. and Baldocchi D., 2008. Effects of diffuse radiation on canopy gas exchange processes in a forest ecosystem. J. Geophysical Res., 113, doi:10.1029/2007JG000663

Lasslop G., Reichstein M., Papale D., et al., 2010. Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation. Global Change Biology, 16, 187-208. doi: 10.1111/j.1365-2486.2009.02041.x.

Luo X. and Zhou X., 2006. Soil respiration and the environment. Academic Press, Oxford, Elsevier.

McArthur L.J.B., 2005. Baseline Surface Radiation Network (BSRN) Operations Manual (Version 2.1). World Climate Research Programme, WCRP-121, WMO Tech. Doc. 1274, 176 pp. Geneva

McCree K.J., 1972a. The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agric. Meteorol., 9, 191-216.

McCree K.J., 1972b. Test of current definitions of photosynthetically active radiation against leaf photosynthesis data. Agric. Meteorol., 10, 443-453.

McCree K.J., 1981. Photosynthetically Active Radiation, Chapter 2 in Physiological Plant Ecology I: Response to the Physical Environment (Eds Lange O.L., Nobel P.S., Osmond C.B., Ziegler H.) Springer-Verlag, Berlin Heidelberg New York.

Mercado L.M., Bellouin N., Sitch S., Boucher O., Huntingford C., Wild M., and Cox P.M., 2009. Impact of changes in diffuse radiation on the global land carbon sink. Nature, 458, 1014-1017. doi:10.1038/nature07949.

Moffat A., Papale D., Reichstein M., et al., 2007. Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes. Agric. Forest Meteorol., 147, 209-232.

Myers D.R., 1989. Application of a standard method of uncertainty analysis to solar radiometer calibrations. Proc. Annual Conf. American Solar Energy Society, June 19-22, Denver, CO, USA.

Ohmura A., Dutton E.G., Forgan B., et al., 1998. Baseline Surface Radiation Network (BSRN/WCRP): New precision radiometry for climate research. Bulletin of the American Meteorological Society, 79, 2115-2136.

Papale D., Reichstein M., Aubinet M., et al., 2006. Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences, 3, 571-583.

Perez-Priego O., El-Madany T., Migliavacca M., Kowalski A.S., Jung M., Carrara A., Kolle O., Martín M.P., Pacheco-Labrador J., Moreno G., and Reichstein M., 2017. Evaluation of eddy covariance latent heat fluxes with independent lysimeter and sapflow estimates in a Mediterranean savannah ecosystem. Agric. Forest Meteorol., 236, 87-99.

Philipona R., Fröhlich C., and Betz Ch., 1995. Characterization of pyrgeometers and the accuracy of atmospheric long-wave radiation instruments. Applied Optics, 34(9) 1598-1605.

Pilegaard K., Ibrom A., Courtney M.S., Hummelshøj P., and Jensen N.O., 2011. Increasing net CO2 uptake by a Danish beech forest during the period from 1996 to 2009. Agric. Forest Meteorol., 151, 934-946.

Quaschning V., 2003. Technology fundamentals. The sun as an energy resource. Renew. Energy World, 6(5), 90-93.

Rabinowitch E.I., 1951. Photosynthesis and Related Processes. vol. II, part 1, Interscience Publ., New-York.

Rebmann C., Aubinet M., Schmid H.P., et al., 2018. ICOS eddy covariance flux-station site setup. Int. Agrophys., 32, 471-494.

Reda I., Hickey J.R., Stoffel T., and Myers D., 2002. Pyrgeometer calibration at the National Renewable Energy Laboratory (NREL). J. Atmospheric and Solar-Terrestrial Physics, 64(15), 1623-1629.

Reda I., Gotseff P. A., Stoffel T., and Webb C., 2003. Evaluation of improved pyrgeometer calibration method. In Proc. Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting (Ed. by D. Carrothers). U.S. Department of Energy, Richland, Washington.

Reichstein M., Tenhunen J.D., Roupsard O., et al., 2002. Severe drought effects on ecosystem CO2 and H2O fluxes at three Mediterranean evergreen sites: Revision of current hypotheses? Global Change Biology, 8(10), 999-1017, doi:10.1046/j.1365-2486.2002.00530.x.

Roderick M.L., Farquhar G.D., Berry S.L., and Noble I.R., 2001. On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation, Oecologia, 129, 21-30.

Ross J. and Sulev M., 2000. Sources of errors in measurements of PAR. Agric. Forest Meteorol., 100, 103-125.

Rutledge S., et al., (2010). Photodegradation leads to increased carbon dioxide losses from terrestrial organic matter. Global Change Biology, 16(11), 3065-3074.

Sitch S., Huntingford C., Gedney N., et al., 2008. Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using 5 Dynamic Global Vegetation Models (DGVMs), Global Change Biology, 14, 1-25.

Stoffel T., 2005. Solar Infrared Radiation Station (SIRS) Handbook, Tech. Rep., ARM TR-025, 29 pp., Atmos. Radiat. Meas. Program, U.S. Dep. of Energy, Washington, D. C. (Available at http://www.arm.gov.).

Stoy P., Mauder M., Foken T., et al., 2013. A data-driven analysis of energy balance closure across FLUXNET research sites: The role of landscape scale heterogeneity. Agricultural and Forest Meteorology, 171-172: 137-152. doi: 10.1016/j. agrformet.2012.11.004

Vignola F., Michalsky J., and Stoffel T., 2012. Solar and infrared radiation measurements. Energy and the Environment. CRC Press. New York: Taylor and Francis.

Wehrli C., 1985. Extraterrestrial solar spectrum. Publication No. 615, Physikalisch-Meteorologisches Observatorium Davos + World Radiation Center (PMOD/WRC) Davos Dorf, Switzerland.

Wells C.V., 1995. Optical and Solar Radiometry Standards and Traceability. PV Radiometric Workshop Proc., NREL CP/411-20008. National Renewable Energy Laboratory, Golden, CO.

Wielicki B.A., Young D.F., Mlynczak M.G., Thome K.J., Leroy, S., Corliss J., et al., 2013. Achieving climate change absolute accuracy in orbit. Bulletin of the American Meteorological Society, 94 (10), 1519-1539. https://doi.org/10.1175/BAMS-D-12-00149.1

Wilson K., Goldstein A., Falge E., et al., 2002. Energy balance closure at FLUXNET sites. Agric. Forest Meteorol., 113, 223-243.

World Meteorological Organization, 1983. Guide to Climatological Practices. Second edition, WMO-No. 100, Geneva

World Meteorological Organization, 1990. Abridged Final Report of the Tenth Session of the Commission for Instruments and Methods of Observation (CIMO X). WMO No., 727, Geneva.

World Meteorological Organization, 2005. Baseline Surface Radiation Network (BSRN): Operations Manual. WCRP-121. WMO/TD-No. 1274, Geneva.

World Meteorological Organization, 2008. Guide to Meteorological Instruments and Methods of Observation. World Meteorological Organization-No. 8, Geneva.

International Agrophysics

The Journal of Institute of Agrophysics of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2017: 1.242
5-year IMPACT FACTOR: 1.267

CiteScore 2018: 1.44

SCImago Journal Rank (SJR) 2018: 0.399
Source Normalized Impact per Paper (SNIP) 2018: 0.891


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 225 225 23
PDF Downloads 189 189 12