Estimating the storage term in eddy covariance measurements: the ICOS methodology

Open access


In eddy covariance measurements, the storage flux represents the variation in time of the dry molar fraction of a given gas in the control volume representative of turbulent flux. Depending on the time scale considered, and on the height above ground of the measurements, it can either be a major component of the overall net ecosystem exchange or nearly negligible. Instrumental configuration and computational procedures must be optimized to measure this change at the time step used for the turbulent flux measurement. Three different configurations are suitable within the Integrated Carbon Observation System infrastructure for the storage flux determination: separate sampling, subsequent sampling and mixed sampling. These configurations have their own advantages and disadvantages, and must be carefully selected based on the specific features of the considered station. In this paper, guidelines about number and distribution of vertical and horizontal sampling points are given. Details about suitable instruments, sampling devices, and computational procedures for the quantification of the storage flux of different GHG gases are also provided.

Acosta M., Pavelka M., Montagnani L., Kutsch W., Lindroth A., Juszczak R., and Janouš D., 2013. Soil surface CO2 efflux measurements in Norway spruce forests. Comparison between four different sites across Europe – from boreal to alpine forest. Geoderma, 192, 295-303. DOI: 10.1016/j. geoderma.2012.08.027.

Al-Saidi A., FukuzawaY., Furukawa N., Ueno M., Baba S., and Kawamitsu Y., 2009. A system for the measurement of vertical gradients of CO2, H2O and air temperature within and above the canopy of plant. Plant Prod. Sci., 12(2), 139-149.

de Araujo A.C., Dolman A.J., Waterloo M.J., Gash J.H.C., Kruijt B., Zanchi F.B., de Lange J.M.E. et al., 2010. The spatial variability of CO2 storage and the interpretation of eddy covariance fluxes in central Amazonia. Agricultural and Forest Meteorology, 150, 226-237.

Aubinet M., Berbigier P., Bernhofer Ch., Cescatti A., Feigenwinter C., Granier A., Grünwald Th., Havrankovà K., Heinesch B., Longdoz B., Marcolla B., Montagnani L., and Sedlak P., 2005. Comparing CO2 storage and advection conditions at night at different CARBOEUROFLUX sites. Boundary Layer Meteorology, 116: 63-94. DOI: 10.1007/s10546-004-7091-8.

Aubinet M., Feigenwinter C., Bernhofer Ch., Canepa E., Lindroth L., Montagnani C., Rebmann P., Sedlak E., and Van Gorsel A., 2010. Direct advection measurements do not help to solve the nighttime CO2 closure problem: Evidence from three different forests. Agricultural and Forest Meteorology, DOI:10.1016/j.agrformet.2010. 01.016.

Baldocchi D.D., 2008. ‘Breathing’ of the terrestrial biosphere: Lessons learned from a global network of carbon dioxide flux measurement systems. Turner Review. Australian J. Botany.

Bjorkegren A.B., Grimmond C.S.B., Kotthaus S., and Malamud B.D., 2015. CO2 emission estimation in the urban environment: Measurement of the CO2 storage term. Atmos. Environ., 122, 775-790, doi:10.1016/j.atmosenv. 2015.10.012,

Cescatti A., Marcolla B., Goded I., and Gruening C., 2016. Optimal use of buffer volumes for the measurement of atmospheric gas concentration in multi-point systems. Atmospheric Measurement Techniques, 9(9): 4665-4672.

Crawford B., Grimmond C.S.B., and Christen A., 2011. Five years of carbon dioxide fluxes measurements in a highly vegetated suburban area. Atmospheric Environ., 45, 896-905, doi:10.1016/j.atmosenv.2010.11.017.

Desai A., Xu K., Tian H., Weishampel P., Thom J., Baumann D., Andrews A.E., Cook B.D., King J.Y., and Kolka R., 2015. Landscape-level terrestrial methane flux observed from a very tall tower. Agric. Forest Meteorol., 201 (2015) 61-75.

Desjardins R.L., 1985. Carbon dioxide budget of maize. Agric. For. Meteorol., 36: 29-41.

Etzold S., Buchmann N., and Eugster W., 2010. Contribution of advection to the carbon budget measured by eddy covariance at a steep mountain slope forest in Switzerland. Biogeosciences, 7, 2461-2475, doi:10.5194/bg-7-2461-2010.

Feigenwinter Ch., Bernhofer Ch., Eichelmann U., Heinesch B., Hertel M., Janous D., Kolle O., Lagergren F., Lindroth A., Minerbi S., Moderow U., Mölder M., Montagnani L., Queck R., Rebmann C., Vestin P., Yernaux M., Zeri M., Ziegler W., and Aubinet M., 2008. Comparison of horizontal and vertical advective CO2 fluxes at three forest sites. Agric. Forest Meteor., 148, 12-24. DOI: 10.1016/j.agrformet.2007.08.013.

Finnigan J., Clement R., Mahli Y., Leuning R., and Cleugh A., 2003. A re-evaluation of long-term flux measurement techniques Part I: Averaging and coordinate rotation. Boundary-Layer Meteorology, DOI: 10.1023/A: 1021554900225

Finnigan J.J., 2006. The storage term in eddy flux calculations. Agric. For. Meteorol., 136, 108-113, doi:10.1016/j. agrformet.2004.12.010.

Goulden M., Munger J.W., Fan S.-M., Daube B.C., Wofsy S.C., 1996. Measurements of carbon sequestration by long-term eddy covariance: methods and a critical evaluation of accuracy. Global Change Biology, 2(3), 169-182, DOI: 10.1111/j.1365-2486.1996.tb00070.x.

Grace J., Malhi Y., Lloyd J., McIntyre J., Miranda A.C., Meir P., and Miranda H.S., 1996. The use of eddy covariance to infer the net carbon dioxide uptake of Brazilian rain forest. Glob. Change Biol., 2, 209-217, doi:10.1111/j.1365-2486. 1996.tb00073.x

Greco S. and Baldocchi D., 1996. Seasonal variations of CO2 and water vapour exchange rates over a temperate deciduous forest. Global Change Biol., 2(3), 183-197.

Gu L., Massman W.J., Leuning R., Pallardy S.G., Meyers T., Hanson P.J., Riggs J.S., Hosmand K.P., and Yang B., 2012. The fundamental equation of eddy covariance and its application in flux measurements. Agric. Forest Meteorol., 152, 135-148, doi:10.1016/j.agrformet.2011.09.014.

Haverd V., Cuntz M., Leuning R., and Keith H., 2007. Air and biomass heat storage fluxes in a forest canopy: Calculation within a soil vegetation atmosphere transfer model. Agric. Forest Meteorol., 147, 125-139, doi: 10.1016/j.agrformet. 2007.07.006.

Heinesch B., Yernaux M., and Aubinet M., 2007. Some methodological questions concerning advection measurements: a case study. Boundary-Layer Meteor. 122, 457-478.

Hollinger D.Y., Kelliher F.M., Byers J.N., Hunt J.E., McSeveny T.M., and Weir P.L., 1994. Carbon dioxide exchange between an undisturbed old-growth temperate forest and the atmosphere. Ecology, 75: 134-150.

Kowalski A.S. and Argüeso D., 2011. Scalar arguments of the mathematical functions defining molecular and turbulent transport of heat and mass in compressible fluids. Tellus, 63B, 1059-1066.

Kutter E., Yi C., Hendrey G., Liu H., Eaton T., and Ni-Meister W., 2017. Recirculation over complex terrain. J. Geophys. Res. Atmos., 122, 6637-6651, doi:10.1002/2016JD026409.

Lenschow D.H., Mann J., and Kristensen L., 1994. How long is long enough when measuring fluxes and other turbulence statistics? J. Atmos. and Oceanic Tech., 11, 661-673.

Leuning R., Zegelin S.J., Jones K., Keith H., and Hughes D., 2008. Measurement of horizontal and vertical advection of CO2 within a forest canopy. Agric. Forest Meteor., 148, 1777-1797.

Mammarella I., Kolari P., Vesala T., and Rinne J., 2007. Determining the contribution of vertical advection to the net ecosystem exchange at Hyytiälä forest, Finland. Tellus, 59B, 900-909.

Marcolla B., Cobbe I., Minerbi S., Montagnani L., and Cescatti A., 2014. Methods and uncertainties in the experimental assessment of horizontal advection. Agric. Forest Meteor., 98-199, 62-71.

McHugh D., Beringer J., Cunningham S.C., Baker P.J., Cavagnaro T.R., Mac Nally R., and Thompson R.M., 2017. Interactions between nocturnal turbulent flux, storage and advection at an “ideal” eucalypt woodland site. Biogeosciences, 14, 3027-3050,

Metzger S., 2018. Surface-atmosphere exchange in a box: Making the control volume a suitable representation for in-situ observations. Agric. Forest Meteor.,

Montagnani L., Manca G., Canepa E., and Georgieva E., 2010. Assessing the method-specific differences in quantifi-cation of CO2 advection at three forest sites during the ADVEX campaign. Agric. Forest Meteor., DOI: 10.1016/j. agrformet.2010.01.013.

Montagnani L., Manca G., Canepa E., Georgieva E., Acosta M., Feigenwinter C., Janous D., Kerschbaumer G., Lindroth A., Minach L., Minerbi S., Mölder M., Pavelka M., Seufert G., Zeri M., and Ziegler W., 2009. A new mass conservation approach to the study of CO2 advection in an alpine forest. J. Geophysical Research-Atmospheres, 114, D07306, DOI:10.1029/2008JD010650.

Nappo C.J., Caneill J.., Furman R.W., Gifford F.A., Kaimal J.C., Kramer M.L., Lockhart T.J., Pendergast M.M., Pielke R.A., Randerson D., Shreffler J.H., and Wyngaard J.C., 1982. The workshop on the representativeness of meteorological observations. June 1981, Boulder, Colorado, Bull. Am. Meteorol. Soc., 63, 761-764.

Nicolini G., Aubinet M., Feigenwinter C., Heinesch B., Lindroth A., Mamadou O., Moderow U., Mölder M., Montagnani L., Rebmann C., and Papale D., 2018. Impact of CO2 storage flux sampling uncertainty on net ecosystem exchange measured by eddy covariance. Agric. Forest Meteor., 248, 228-239,

Ohkubo S. and Kosugi Y., 2008. Amplitude and seasonality of storage fluxes for CO2, heat and water vapour in a temperate Japanese cypress forest. Tellus B, 60, 1, DOI: 10.1111/j.1600-0889.2007.00321.x.

Peltola O., Hensen A., Marchesini L.B., Helfter C., Bosvel F.C., van den Bulk P., Haapanala S., van Huissteden K., Laurila T., Lindroth A., Nemitz E., Röckmann T., Vermeulen A.T., and Mammarella I., 2015. Studying the spatial variability of methane flux with five eddy covariance towers of varying height. Agric. Forest Meteor., 214-215, 456-472.

Raupach M.R., 1988. Canopy Transport Processes, in: Flow and transport in the natural environment (Eds W.L. Steffen, O.T Denmead). Springer, Berlin, Germany.

Rella C.W., Chen H., Andrews A.E., Filges A., Gerbig C., Hatakka J., Karion A., Miles N.L., Richardson S.J., Steinbacher M., Sweeney C., Wastine B., and Zellweger C., 2013. High accuracy measurements of dry mole fractions of carbon dioxide and methane in humid air. Atmos. Meas. Tech., 6, 837-860, 2013, doi:10.5194/amt-6-837-2013.

Saunders M., Dengel S., Moureaux C., et al., 2018. Assessing the impacts of site characteristics, management, disturbance and lateral fluxes on net ecosystem carbon dynamics at ICOS sites. Int. Agrophys., 32, 457-469.

Siebicke L., Hunner M., and Foken T., 2012. Aspects of CO2 advection measurements. Theor. Appl. Climatol., 109: 109-131.

Siebicke L., Steinfeld G., and Foken T., 2011. CO2-gradient measurements using a parallel multi-analyzer setup. Atmospheric Measurement Techniques, 4(3), 409.

Wang X., Wang C., Guo Q., and Wang J., 2016. Improving the CO2 storage measurements with a single profile system in a tall-dense-canopy temperate forest. Agric. Forest Meteor., 228, 327-338,

Xu K., Metzger S., and Desai A.R., 2018a. Surface-atmosphere exchange in a box: Space-time resolved storage and net vertical fluxes from tower-based eddy covariance. Agric. Forest Meteorol., 255, 81-91,

Xu X., Yi C., Montagnani L., and Kutter E., 2018b. Numerical study of the interplay between thermo-topographic slope flow and synoptic flow on canopy transport processes. Agric. Forest Meteorol.,

Yang B., Hanson P.J., Riggs J.S., Pallardy S.G., Heuer M., Hosman K.P., Meyers T.P., Wullschleger S.D., and Gu L.-H., 2007. Biases of CO2 storage in eddy flux measurements in a forest pertinent to vertical configurations of a profile system and CO2 density averaging. J. Geophysical Res., 112, D20123, doi:10.1029/2006JD008243.

Yang P.C., Black T.A., Neuman H.H., Novak M.D., and Blanken P.D., 1999. Spatial and temporal variability of CO2 concentration and flux in a boreal aspen forest. J. Geophysical Res., 104, D22, 27,653-27.

Yi C., Davis K.J., Bakwin P.S., Berger B.W., and Marr L.C., 2000. Influence of advection on measurements of the net ecosystem-atmosphere exchange of CO2 from a very tall tower. J. Geophysical Res., 105, D8, 9991-9999.

International Agrophysics

The Journal of Institute of Agrophysics of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2017: 1.242
5-year IMPACT FACTOR: 1.267

CiteScore 2017: 1.38

SCImago Journal Rank (SJR) 2017: 0.435
Source Normalized Impact per Paper (SNIP) 2017: 0.849


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 166 166 45
PDF Downloads 136 136 15