Standardisation of eddy-covariance flux measurements of methane and nitrous oxide

Open access


Commercially available fast-response analysers for methane (CH4) and nitrous oxide (N2O) have recently become more sensitive, more robust and easier to operate. This has made their application for long-term flux measurements with the eddy-covariance method more feasible. Unlike for carbon dioxide (CO2) and water vapour (H2O), there have so far been no guidelines on how to optimise and standardise the measurements. This paper reviews the state-of-the-art of the various steps of the measurements and discusses aspects such as instrument selection, setup and maintenance, data processing as well as the additional measurements needed to aid interpretation and gap-filling. It presents the methodological protocol for eddy covariance measurements of CH4 and N2O fluxes as agreed for the ecosystem station network of the pan-European Research Infrastructure Integrated Carbon Observation System and provides a first international standard that is suggested to be adopted more widely. Fluxes can be episodic and the processes controlling the fluxes are complex, preventing simple mechanistic gap-filling strategies. Fluxes are often near or below the detection limit, requiring additional care during data processing. The protocol sets out the best practice for these conditions to avoid biasing the results and long-term budgets. It summarises the current approach to gap-filling.

Alberto M.C.R., Wassmann R., Buresh R.J., Quilty J.R., Correa T.Q., Sandro J.M., and Centeno C.A.R., 2014. Measuring methane flux from irrigated rice fields by eddy covariance method using open-path gas analyzer. Field Crops Research, 160, 12-21.

Aubinet M., Grelle A., Ibrom A., Rannik U., Moncrieff J., Foken T.,... Vesala T., 2000. Estimates of the annual net carbon and water exchange of forests: The EUROFLUX methodology, in: Advances in Ecological Research, 30, Advances in Ecological Research, 113-175.

Aubinet M., Vesala T., and Papale D., 2012. Eddy covariance: a practical guide to measurement and data analysis, Springer Science and Business Media, Dordrecht, The Netherlands.

Baldocchi D., Detto M., Sonnentag O., Verfaillie J., Teh Y.A., Silver W., and Kelly N.M., 2012. The challenges of measuring methane fluxes and concentrations over a peatland pasture. Agric. Forest Meteorol., 153, 177-187.

Baldocchi D., Falge E., Gu L.H., Olson R., Hollinger D., Running S.,. . . Wofsky S., 2001. FLUXNET: A new tool to study the temperal and spatial variability of ecosystem-scale carobn dioxide, water vapor, and energy flux densities. Bull. American Meteorol. Soc., 82, 2415-2434.

Bhattacharyya P., Neogi S., Roy K.S., Dash P.K., Nayak A.K., and Mohapatra T., 2014. Tropical low land rice ecosystem is a net carbon sink. Agriculture, Ecosystems Environ., 189, 127-135.

Brown M.G., Humphreys E.R., Moore T.R., Roulet N.T., and Lafleur P.M., 2014. Evidence for a nonmonotonic relationship between ecosystem-scale peatland methane emissions and water table depth. J. Geophysical Res.: Biogeosciences, 119, 826-835.

Brown S.E., Sargent S., and Wagner-Riddle C., 2017. Evaluation of a lower-powered analyser and sampling system for eddy-covariance measurements of nitrous oxide fluxes. Atmos. Meas. Tech. Discuss., 2017, 1-28.

Butterbach-Bahl K., Baggs E.M., Dannenmann M., Kiese R., and Zechmeister-Boltenstern S., 2013. Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philosophical Trans. Royal Society B-Biological Sciences, 368.

Christensen S., Ambus P., Arah J.R.M., Clayton H., Galle B., Griffith D.W.T., . . . Wienhold F.G., 1996. Nitrous oxide emission from an agricultural field: Comparison between measurements by flux chamber and micrometerological techniques. Atmospheric Environment, 30, 4183-4190.

Chu H., Chen J., Gottgens J.F., Ouyang Z., John R., Czajkowski K., and Becker R., 2014. Net ecosystem methane and carbon dioxide exchanges in a Lake Erie coastal marsh and a nearby cropland. J. Geophysical Research: Biogeosciences, 119, 722-740.

Coates T.W., Benvenutti M.A., Flesch T.K., Charmley E., McGinn S.M., and Chen D., 2018. Applicability of eddy covariance to estimate methane emissions from grazing cattle. J. Environmental Quality, 47, 54-61.

Cowan N.J., Levy P.E., Famulari D., Anderson M., Drewer J., Carozzi M., . . . Skiba U.M., 2016. The influence of tillage on N2O fluxes from an intensively managed grazed grassland in Scotland. Biogeosciences, 13, 4811-4821.

Dengel S., Levy P.E., Grace J., Jones S.K., and Skiba U.M., 2011. Methane emissions from sheep pasture, measured with an open-path eddy covariance system. Global Change Biology, 17, 3524-3533.

Dengel S., Zona D., Sachs T., Aurela M., Jammet M., Parmentier F.J.W., . . . Vesala T., 2013. Testing the applicability of neural networks as a gap-filling method using CH4 flux data from high latitude wetlands. Biogeosciences, 10, 8185-8200.

Desai A.R., Xu K., Tian H., Weishampel P., Thom J., Baumann D., . . . Kolka R., 2015. Landscape-level terrestrial methane flux observed from a very tall tower. Agricultural and Forest Meteorology, 201, 61-75.

Detto M., Verfaillie J., Anderson F., Xu L., and Baldocchi D., 2011. Comparing laser-based open- and closed-path gas analyzers to measure methane fluxes using the eddy covariance method. Agricultural and Forest Meteorology, 151, 1312-1324.

Di Marco C., Skiba U., Weston K., Hargreaves K., and Fowler D., 2004. Field scale N2O flux measurements from grassland using eddy covariance. Water Air and Soil Pollution Focus, 4, 143-149.

Erkkilä K.M., Mammarella I., Bastviken D., Biermann T., Heiskanen J.J., Lindroth A., . . . Ojala A., 2017. Methane and carbon dioxide fluxes over a lake: comparison between eddy covariance, floating chambers and boundary layer method. Biogeosciences Discuss., 2017, 1-29.

Eugster W., DelSontro T., and Sobek S., 2011. Eddy covariance flux measurements confirm extreme CH4 emissions from a Swiss hydropower reservoir and resolve their short-term variability. Biogeosciences, 8, 2815-2831.

Eugster W., and Merbold L., 2015. Eddy covariance for quantifying trace gas fluxes from soils. Soil, 1, 187-205.

Eugster W. and Plüss P., 2010. A fault-tolerant eddy covariance system for measuring CH4 fluxes. Agricultural and Forest Meteorology, 150, 841-851.

Eugster W., Zeyer K., Zeeman M., Michna P., Zingg A., Buchmann N., and Emmenegger L., 2007. Methodical study of nitrous oxide eddy covariance measurements using quantum cascade laser spectrometery over a Swiss forest. Biogeosciences, 4, 927-939.

Falge E., Baldocchi D., Olson R., Anthoni P., Aubinet M., Bernhofer C., . . . Wofsy S., 2001. Gap filling strategies for defensible annual sums of net ecosystem exchange. Agricultural and Forest Meteorology, 107, 43-69.

Famulari D., Nemitz E., Di Marco C., Phillips G.J., Thomas R., House E., and Fowler D., 2010. Eddy-covariance measurements of nitrous oxide fluxes above a city. Agricultural and Forest Meteorology, 150, 786-793.

Fan S.M., Wofsy S.C., Bakwin P.S., Jacob D.J., Anderson S.M., Kebabian P.L., . . . Fitzjarrald D.R., 1992. Micro-meteorological measurements of CH4 and CO2 exchange between the atmosphere and sub-arctic Tundra. J. Geophysical Research-Atmospheres, 97, 16627-16643.

Felber R., Münger A., Neftel A., and Ammann C., 2015. Eddy covariance methane flux measurements over a grazed pasture: effect of cows as moving point sources. Biogeosciences, 12, 3925-3940.

Fiedler S., Vepraskas M.J., and Richardson J.L., 2007. Soil redox potential: importance, field measurements, and observations. Advances in Agronomy, 94, 1-54.

Finkelstein P.L., and Sims P.F., 2001. Sampling error in eddy correlation flux measurements. Journal of Geophysical Research: Atmospheres, 106, 3503-3509.

Flechard C.R., Ambus P., Skiba U., Rees R.M., Hensen A., van Amstel A., . . . Grosz B., 2007. Effects of climate and management intensity on nitrous oxide emissions in grassland systems across Europe. Agriculture, Ecosystems Environment, 121, 135-152.

Flechard C.R., Nemitz E., Smith R.I., Fowler D., Vermeulen A.T., Bleeker A., . . . Sutton M.A., 2010. Dry deposition of reactive nitrogen to European ecosystems: a comparison of inferential models across the NitroEurope network. Atmos. Chem. Phys. Discuss., 10, 29291-29348.

Foken T. and Wichura B., 1996. Tools for quality assessment of surface-based flux measurements. Agricultural and Forest Meteorology, 78, 83-105.

Forbrich I., Kutzbach L., Wille C., Becker T., Wu J., and Wilmking M., 2011. Cross-evaluation of measurements of peatland methane emissions on microform and ecosystem scales using high-resolution landcover classification and source weight modelling. Agricultural and Forest Meteorology, 151, 864-874.

Franz D., Koebsch F., Larmanou E., Augustin J., and Sachs T., 2016. High net CO2 and CH4 release at a eutrophic shallow lake on a formerly drained fen. Biogeosciences, 13, 3051-3070.

Fratini G., Ibrom A., Arriga N., Burba G., and Papale D., 2012. Relative humidity effects on water vapour fluxes measured with closed-path eddy-covariance systems with short sampling lines. Agricultural and Forest Meteorology, 165, 53-63.

Gao Y., Chen H., and Zeng X., 2014. Effects of nitrogen and sulfur deposition on CH4 and N2O fluxes in high-altitude peatland soil under different water tables in the Tibetan Plateau. Soil Science and Plant Nutrition, 60, 404-410.

Gauci V., Matthews E., Dise N., Walter B., Koch D., Granberg G., and Vile M., 2004. Sulfur pollution suppression of the wetland methane source in the 20th and 21st centuries. Proc. National Academy of Sciences of the United States of America, 101, 12583.

Gažovič M., Kutzbach L., Schreiber P., Wille C., and Wilmking M., 2010. Diurnal dynamics of CH4 from a boreal peatland during snowmelt. Tellus B, 62, 133-139.

Ge H.-X., Zhang H.-S., Zhang H., Cai X.-H., Song Y., and Kang L., 2018. The characteristics of methane flux from an irrigated rice farm in East China measured using the eddy covariance method. Agricultural and Forest Meteorology, 249, 228-238.

Gioli B., Toscano P., Lugato E., Matese A., Miglietta F., Zaldei A., and Vaccari F.P., 2012. Methane and carbon dioxide fluxes and source partitioning in urban areas: The case study of Florence, Italy. Environ. Pollution, 164, 125-131.

Goulden M.L., Munger J.W., Fan S.-M., Daube B.C., and Wofsy S.C., 1996. Measurements of carbon sequestration by long-term eddy covariance: methods and a critical evaluation of accuracy. Global Change Biology, 2, 169-182.

Groffman P.M., Butterbach-Bahl K., Fulweiler R.W., Gold A.J., Morse J.L., Stander E.K., . . . Vidon P., 2009. Challenges to incorporating spatially and temporally explicit phenomena (hotspots and hot moments) in denitrification models. Biogeochemistry, 93, 49-77.

Hargreaves K.J., and Fowler D., 1998. Quantifying the effects of water table and soil temperature on the emission of methane from peat wetland at the field scale. Atmospheric Environment, 32, 3275-3282.

Hargreaves K.J., Fowler D., Pitcairn C.E.R., and Aurela M., 2001. Annual methane emission from Finnish mires estimated from eddy covariance campaign measurements. Theoretical Applied Climatology, 70, 203-213.

Hargreaves K.J., Wienhold F.G., Klemedtsson L., Arah J.R.M., Beverland I.J., Fowler D., . . . Harris G.W., 1996. Measurement of nitrous oxide emission from agricultural land using micrometeorological methods. Atmospheric Environment, 30, 1563-1571.

Haszpra L., Hidy D., Taligás T., and Barcza Z., 2018. First results of tall tower based nitrous oxide flux monitoring over an agricultural region in Central Europe. Atmospheric Environment, 176, 240-251.

Hatala J.A., Detto M., and Baldocchi D.D., 2012a. Gross ecosystem photosynthesis causes a diurnal pattern in methane emission from rice. Geophysical Research Letters, 39.

Hatala J.A., Detto M., Sonnentag O., Deverel S.J., Verfaillie J., and Baldocchi D.D., 2012b. Greenhouse gas (CO2, CH4, H2O) fluxes from drained and flooded agricultural peatlands in the Sacramento-San Joaquin Delta. Agriculture, Ecosystems & Environment, 150, 1-18.

Helfter C., Tremper A.H., Halios C.H., Kotthaus S., Bjorkegren A., Grimmond C.S.B., . . . Nemitz E., 2016. Spatial and temporal variability of urban fluxes of methane, carbon monoxide and carbon dioxide above London, UK. Atmos. Chem. Phys. Discuss., 2016, 1-31.

Hendriks D.M.D., van Huissteden J., and Dolman A.J., 2010. Multi-technique assessment of spatial and temporal variability of methane fluxes in a peat meadow. Agricultural and Forest Meteorology, 150, 757-774.

Herbst M., Friborg T., Ringgaard R., and Soegaard H., 2011. Interpreting the variations in atmospheric methane fluxes observed above a restored wetland. Agricultural and Forest Meteorology, 151, 841-853.

Herbst M., Friborg T., Schelde K., Jensen R., Ringgaard R., Vasquez V., . . . Soegaard H., 2013. Climate and site management as driving factors for the atmospheric greenhouse gas exchange of a restored wetland. Biogeosciences, 10, 39-52.

Hommeltenberg J., Mauder M., Drösler M., Heidbach K., Werle P., and Schmid H.P., 2014. Ecosystem scale methane fluxes in a natural temperate bog-pine forest in southern Germany. Agricultural and Forest Meteorology, 198-199, 273-284.

Horst T.W., 1997. A simple formula for attenuation of eddy fluxes measured with first-order-response scalar sensors. Boundary-Layer Meteorology, 82, 219-233.

Horst T.W. and Lenschow D.H., 2009. Attenuation of Scalar Fluxes Measured with Spatially-displaced Sensors. Boundary-Layer Meteorology, 130, 275-300.

Hörtnagl L., Barthel M., Buchmann N., Eugster W., Butterbach-Bahl K., Díaz-Pinés E., . . . Merbold L., 2018. Greenhouse gas fluxes over managed grasslands in Central Europe. Global Change Biology, 24, 1843-1872.

Hörtnagl L., and Wohlfahrt G., 2014. Methane and nitrous oxide exchange over a managed hay meadow. Biogeosciences, 11, 7219-7236.

Hsieh C.-I., Leahy P., Kiely G., and Li C., 2005. The Effect of Future Climate Perturbations on N2O Emissions from a Fertilized Humid Grassland. Nutrient Cycling in Agroecosystems, 73, 15-23.

Huang H., Wang J., Hui D., Miller D.R., Bhattarai S., Dennis S., . . . Reddy K.C., 2014. Nitrous oxide emissions from a commercial cornfield (Zea mays) measured using the eddy covariance technique. Atmos. Chem. Phys., 14, 12839-12854.

Ibrom A., Dellwik E., Flyvbjerg H., Jensen N.O., and Pilegaard K., 2007. Strong low-pass filtering effects on water vapour flux measurements with closed-path eddy correlation systems. Agricultural and Forest Meteorology, 147, 140-156.

IEEE, 2008. IEEE Standard for a precision clock synchronization protocol for networked measurement and control systems, edited by: 1588-2002), I. S.-R. o. I. S., IEEE, 300 pp.

Imer D., Merbold L., Eugster W., and Buchmann N., 2013. Temporal and spatial variations of soil CO2, CH4 and N2O fluxes at three differently managed grasslands. Biogeosciences, 10, 5931-5945.

IPCC, 2013. Climate Change 2013 - The physical science basis. Working Group I Contri bution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge.

ISO, 2009. ISO 80000-9. Quantitities and units - Part 9: Physical chemistry and molecular physics, International Standard, ISO copyright office, Geneva, Switzerland.

Jammet M., Crill P., Dengel S., and Friborg T., 2015. Large methane emissions from a subarctic lake during spring thaw: Mechanisms and landscape significance. J. Geophysical Research: Biogeosciences, 120, 2289-2305.

Jammet M., Dengel S., Kettner E., Parmentier F.J.W., Wik M., Crill P., and Friborg T., 2017. Year-round CH4 and CO2 flux dynamics in two contrasting freshwater ecosystems of the subarctic. Biogeosciences Discuss., 2017, 1-49.

Jarvi L., Nordbo A., Rannik Ü., Haapanala S., Riikonen A., Mammarella I., . . . Vesala T., 2014. Urban nitrous-oxide fluxes measured using the eddy-covariance technique in Helsinki, Finland. Boreal Environ. Res., 19, 108-121.

Jha C.S., Rodda S.R., Thumaty K.C., Raha A.K., and Dadhwal V.K., 2014. Eddy-covariance based methane flux in Sundarbans mangroves, India. J. Earth Syst. Sci., 5, 1089-1096.

Jones S.K., Famulari D., Di Marco C.F., Nemitz E., Skiba U.M., Rees R.M., and Sutton M.A., 2011. Nitrous oxide emissions from managed grassland: a comparison of eddy covariance and static chamber measurements. Atmos. Meas. Tech., 4, 2179-2194.

Kaimal J.C., and Finnigan J.J., 1994. Atmospheric boundary layer flows, Oxford University Press, New York.

Kaimal J.C., Wyngaard J.C., Izumi Y., and Cote O.R., 1972. Spectral characteristics of surface-layer turbulence. Quart. J. Roy. Meteorol. Soc., 98, 563-589.

Kim D.-G., Mishurov M., and Kiely G., 2010. Effect of increased N use and dry periods on N2O emission from a fertilized grassland. Nutrient Cycling in Agroecosys., 88, 397-410.

Knox S.H., Matthes J.H., Sturtevant C., Oikawa P.Y., Verfaillie J., and Baldocchi D., 2016. Biophysical controls on interannual variability in ecosystem-scale CO2 and CH4 exchange in a California rice paddy. J. Geophysical Research: Biogeosciences, 121, 978-1001.

Knox S.H., Sturtevant C., Matthes J.H., Koteen L., Verfaillie J., and Baldocchi D., 2015. Agricultural peatland restoration: effects of land-use change on greenhouse gas (CO2 and CH4) fluxes in the Sacramento-San Joaquin Delta. Global Change Biology, 21, 750-765.

Koebsch F., Jurasinski G., Koch M., Hofmann J., and Glatzel S., 2015. Controls for multi-scale temporal variation in ecosystem methane exchange during the growing season of a permanently inundated fen. Agricultural and Forest Meteorology, 204, 94-105.

Kormann R., Muller H., and Werle P., 2001. Eddy flux measurements of methane over the fen „Murnauer Moos”, 11 degrees 11 ‚ E, 47 degrees 39 ‚ N, using a fast tunable diode laser spectrometer. Atmospheric Environ., 35, 2533-2544.

Kowalski A. and Serrano-Ortiz P., 2007. On the relationship between the eddy covariance, the turbulent flux, and surface exchange for a trace gas such as CO2. Boundary-Layer Meteorology, 124, 129-141.

Kristensen L., Mann J., Oncley S.P., and Wyngaard J.C., 1997. How close is close enough when measuring scalar fluxes with displaced sensors? J. Atmospheric and Oceanic Technology, 14, 814-821.

Kroon P.S., Schrier-Uijl A.P., Hensen A., Veenendaal E.M., and Jonker H.J.J., 2010. Annual balances of CH4 and N2O from a managed fen meadow using eddy covariance flux measurements. European J. Soil Sci., 61, 773-784.

Laanbroek H.J., 2010. Methane emission from natural wetlands: interplay between emergent macrophytes and soil microbial processes. A mini-review. Annals of Botany, 105, 141-153.

Langford B., Acton J., Ammann C., Valach A., and Nemitz E., 2015. Eddy-covariance data with low signal-to-noise ratio: time-lag determination, uncertainties and limit of detection. Atmos. Meas. Tech., 8, 4197-4213.

Lasslop G., Reichstein M., Papale D., Richardson A.D., Arneth A., Barr A., . . . Wohlfahrt G., 2010. Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation. Global Change Biology, 16, 187-208.

Laurila T., Tuovinen J.P., Lohila A., Hatakka J., Aurela M., Thum M., . . . Vesala T., 2005. Measuring methane emissions from a landfill using a cost-effective micrometeorological method. Geophysical Research Letters, 32, L19808.

Leahy P., Kiely G., and Scanlon T.M., 2004. Managed grasslands: A greenhouse gas sink or source? Geophysical Research Letters, 31.

Lee S.C., Christen A., Black A.T., Johnson M.S., Jassal R.S., Ketler R., . . . Merkens M., 2017. Annual greenhouse gas budget for a bog ecosystem undergoing restoration by rewetting. Biogeosciences, 14, 2799-2814.

Lenschow D.H., Wulfmeyer V., and Senff C., 2000. Measuring Second-through Fourth-Order Moments in Noisy Data. J. Atmospheric and Oceanic Technology, 17, 1330-1347.

Leppelt T., Dechow R., Gebbert S., Freibauer A., Lohila A., Augustin J., . . . Strömgren M., 2014. Nitrous oxide emission budgets and land-use-driven hotspots for organic soils in Europe. Biogeosciences, 11, 6595-6612.

Levy P.E., Cowan N., van Oijen M., Famulari D., Drewer J., and Skiba U., 2017. Estimation of cumulative fluxes of nitrous oxide: uncertainty in temporal upscaling and emission factors. European J. Soil Sci., 68, 400-411.

Li H., Dai S., Ouyang Z., Xie X., Guo H., Gu C., . . . Zhao B., 2018. Multi-scale temporal variation of methane flux and its controls in a subtropical tidal salt marsh in eastern China. Biogeochemistry, 137, 163-179.

Lohila A., Aalto T., Aurela M., Hatakka J., Tuovinen J.-P., Kilkki J., . . . Laurila T., 2016. Large contribution of boreal upland forest soils to a catchment-scale CH4 balance in a wet year. Geophysical Research Letters, 43, 2946-2953.

Lohila A., Laurila T., Tuovinen J.-P., Aurela M., Hatakka J., Thum T., . . . Vesala T., 2007. Micrometeorological measurements of methane and carbon dioxide fluxes at a municipal landfill. Environmental Sci. Technol., 41, 2717-2722.

Long K.D., Flanagan L.B., and Cai T., 2010. Diurnal and seasonal variation in methane emissions in a northern Canadian peatland measured by eddy covariance. Global Change Biology, 16, 2420-2435.

Mammarella I., Werle P., Pihlatie M., Eugster W., Haapanala S., Kiese R., . . . Vesala T., 2010. A case study of eddy covariance flux of N2O measured within forest ecosystems: quality control and flux error analysis. Biogeosciences, 7, 427-440.

Mammarella I., Peltola O., Nordbo A., Järvi L., and Rannik Ü., 2016. Quantifying the uncertainty of eddy covariance fluxes due to the use of different software packages and combinations of processing steps in two contrasting ecosystems. Atmos. Meas. Tech., 9, 4915-4933.

Martikainen P.J., Nykänen H., Crill P., and Silvola J., 1993. Effect of a lowered water table on nitrous oxide fluxes from northern peatlands. Nature, 366, 51-53.

Marushchak M.E., Friborg T., Biasi C., Herbst M., Johansson T., Kiepe I., . . . Shurpali N.J., 2016. Methane dynamics in the subarctic tundra: combining stable isotope analyses, plot- and ecosystem-scale flux measurements. Biogeosci., 13, 597-608.

Marushchak M.E., PitkÄMÄKi A., Koponen H., Biasi C., SeppÄLÄ M., and Martikainen P.J., 2011. Hot spots for nitrous oxide emissions found in different types of permafrost peatlands. Global Change Biology, 17, 2601-2614.

Matthews E. and Fung I., 1987. Methane emission from natural wetlands: Global distribution, area, and environmental characteristics of sources. Global Biogeochemical Cycles, 1, 61-86.

Matzner E. and Borken W., 2008. Do freeze-thaw events enhance C and N losses from soils of different ecosystems? A review. European J. Soil Sci., 59, 274-284.

Mauder M., Cuntz M., Drüe C., Graf A., Rebmann C., Schmid H.P., . . . Steinbrecher R., 2013. A strategy for quality and uncertainty assessment of long-term eddy-covariance measurements. Agricultural and Forest Meteorology, 169, 122-135.

McDermitt D., Burba G., Xu L., Anderson T., Komissarov A., Riensche B., . . . Hastings S., 2011. A new low-power, open-path instrument for measuring methane flux by eddy covariance. Appl. Phys. B, 102, 391-405.

Meijide A., Manca G., Goded I., Magliulo V., di Tommasi P., Seufert G., and Cescatti A., 2011. Seasonal trends and environmental controls of methane emissions in a rice paddy field in Northern Italy. Biogeosciences, 8, 3809-3821.

Merbold L., Steinlin C., and Hagedorn F., 2013. Winter greenhouse gas fluxes (CO2, CH4 and N2O) from a subalpine grassland. Biogeosciences, 10, 3185-3203.

Merbold L., Eugster W., Stieger J., Zahniser M., Nelson D., and Buchmann N., 2014. Greenhouse gas budget (CO2, CH4 and N2O) of intensively managed grassland following restoration. Global Change Biology, 20, 1913-1928.

Mishurov M., and Kiely G., 2010. Nitrous oxide flux dynamics of grassland undergoing afforestation. Agric, Ecosystems and Environment, 139, 59-65.

Mishurov M. and Kiely G., 2011. Gap-filling techniques for the annual sums of nitrous oxide fluxes. Agricultural and Forest Meteorology, 151, 1763-1767.

Moffat A.M., Papale D., Reichstein M., Hollinger D.Y., Richardson A.D., Barr A.G., . . . Stauch V.J., 2007. Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes. Agricultural and Forest Meteorology, 147, 209-232.

Molodovskaya M., Singurindy O., Richards B.K., Warland J., Johnson M.S., and Steenhuis T.S., 2012. Temporal variability of nitrous oxide from fertilized croplands: hot moment analysis. Soil Sci. Soc. Am. J., 76, 1728-1740.

Moncrieff J.B., Malhi Y., and Leuning R., 1996. The propagation of errors in long-term measurements of land-atmosphere fluxes of carbon and water. Global Change Biol., 2, 231-240.

Moncrieff J.B., Massheder J.M., de Bruin H., Elbers J., Friborg T., Heusinkveld B., . . . Verhoef A., 1997. A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide. J. Hydrology, 189, 589-611.

Moore C.J., 1986. Frequency-response corrections for eddy-correlation systems. Boundary-Layer Meteorology, 37, 17-35.

Nadeau D.F., Rousseau A.N., Coursolle C., Margolis H.A., and Parlange M.B., 2013. Summer methane fluxes from a boreal bog in northern Quebec, Canada, using eddy covariance measurements. Atmospheric Environment, 81, 464-474.

Neftel A., Ammann C., Fischer C., Spirig C., Conen F., Emmenegger L., . . . Wahlen S., 2010. N2O exchange over managed grassland: Application of a quantum cascade laser spectrometer for micrometeorological flux measurements. Agricultural and Forest Meteorology, 150, 775-785.

Neftel A., Fischer C., and Flechard C., 2006. Measurements of greenhouse gas fluxes from agriculture. International Congress Series, 1293, 3-12.

Neftel A., Flechard C., Ammann C., Conen F., Emmenegger L., and Zeyer K., 2007. Experimental assessment of N2O background fluxes in grassland systems. Tellus B, 59, 470-482.

Nemitz E., Famulari D., Ibrom A., Lohila A., Mammarella I., Hensen A., . . . Helfter C., 2019. Performance assessment of six nitrous oxide fast-response sensors for eddy-covariance flux measurements over a managed pasture. Atmospheric Measurement Techniques Discussions, [in preparation].

Nicolini G., Castaldi S., Fratini G., and Valentini R., 2013. A literature overview of micrometeorological CH4 and N2O flux measurements in terrestrial ecosystems. Atmospheric Environment, 81, 311-319.

NEU A1.3 Sampling & chemical analysis cookbook, Version 1.3:, access: 05/02/2018, 2007.

Olson D.M., Griffis T.J., Noormets A., Kolka R., and Chen J., 2013. Interannual, seasonal, and retrospective analysis of the methane and carbon dioxide budgets of a temperate peatland. J. Geophysical Research: Biogeosciences, 118, 226-238.

Papale D. and Valentini R., 2003. A new assessment of European forests carbon exchanges by eddy fluxes and artificial neural network spatialization. Global Change Biology, 9, 525-535.

Parmentier F.J.W., van Huissteden J., van der Molen M.K., Schaepman-Strub G., Karsanaev S.A., Maximov T.C., and Dolman A.J., 2011. Spatial and temporal dynamics in eddy covariance observations of methane fluxes at a tundra site in northeastern Siberia. J. Geophysical Research: Biogeosciences, 116, n/a-n/a.

Pattey E., Blackburn L.G., Strachan I.B., Desjardins R., and Dow D., 2008. Spring thaw and growing season N2O emissions from a field planted with edible peas and a cover crop. Canadian J. Soil Science, 88, 241-249.

Pattey E., Strachan I.B., Desjardins R.L., Edwards G.C., Dow D., and MacPherson J.I., 2006. Application of a tunable diode laser to the measurement of CH4 and N2O fluxes from field to landscape scale using several micrometeorological techniques. Agricultural and Forest Meteorology, 136, 222-236.

Pawlak W., and Fortuniak K., 2016. Eddy covariance measurements of the net turbulent methane flux in the city centre – results of 2-year campaign in Łódź, Poland. Atmos. Chem. Phys., 16, 8281-8294.

Peltola O., Hensen A., Belelli Marchesini L., Helfter C., Bosveld F.C., van den Bulk W.C.M., . . . Mammarella I., 2015. Studying the spatial variability of methane flux with five eddy covariance towers of varying height. Agricultural and Forest Meteorology, 214-215, 456-472.

Peltola O., Hensen A., Helfter C., Belelli Marchesini L., Bosveld F.C., van den Bulk W.C.M., . . . Mammarella I., 2014. Evaluating the performance of commonly used gas analysers for methane eddy covariance flux measurements: the InGOS inter-comparison field experiment. Biogeosciences, 11, 3163-3186.

Peltola O., Mammarella I., Haapanala S., Burba G., and Vesala T., 2013. Field intercomparison of four methane gas analyzers suitable for eddy covariance flux measurements. Biogeosciences, 10, 3749-3765.

Pihlatie M.K., Kiese R., Brüggemann N., Butterbach-Bahl K., Kieloaho A.J., Laurila T., . . . Vesala T., 2010. Greenhouse gas fluxes in a drained peatland forest during spring frost-thaw event. Biogeosciences, 7, 1715-1727.

Pihlatie M., Rinne J., Ambus P., Pilegaard K., Dorsey J.R., Rannik U., . . . Vesala T., 2005. Nitrous oxide emissions from a beech forest floor measured by eddy covariance and soil enclosure techniques. Biogeosciences, 2, 377-387.

Podgrajsek E., Sahlée E., Bastviken D., Holst J., Lindroth A., Tranvik L., and Rutgersson A., 2014. Comparison of floating chamber and eddy covariance measurements of lake greenhouse gas fluxes. Biogeosciences, 11, 4225-4233.

Podgrajsek E., Sahlée E., Bastviken D., Natchimuthu S., Kljun N., Chmiel H.E., . . . Rutgersson A., 2016. Methane fluxes from a small boreal lake measured with the eddy covariance method. Limnology and Oceanography, 61, S41-S50.

Poffenbarger H.J., Needelman B.A., and Megonigal J.P., 2011. Salinity influence on methane emissions from tidal marshes. Wetlands, 31, 831-842, 10.1007/s13157-011-0197-0

Prajapati P. and Santos E.A., 2017. Measurements of methane emissions from a beef cattle feedlot using the eddy covariance technique. Agricultural and Forest Meteorology, 232, 349-358.

Pypker T.G., Moore P.A., Waddington J.M., Hribljan J.A., and Chimner R.C., 2013. Shifting environmental controls on CH4 fluxes in a sub-boreal peatland. Biogeosciences, 10, 7971-7981.

Rannik Ü., Haapanala S., Shurpali N.J., Mammarella I., Lind S., Hyvönen N., . . . Vesala T., 2015. Intercomparison of fast response commercial gas analysers for nitrous oxide flux measurements under field conditions. Biogeosciences, 12, 415-432.

Rannik Ü., Peltola O., and Mammarella I., 2016. Random uncertainties of flux measurements by the eddy covariance technique. Atmos. Meas. Tech. Discuss., 2016, 1-31.

Rannik Ü. and Vesala T., 1999. Autoregressive filtering versus linear detrending in estimation of fluxes by the eddy covariance method. Boundary-Layer Meteorology, 91, 259-280.

Rees R.M., Augustin J., Alberti G., Ball B.C., Boeckx P., Cantarel A., . . . Wuta M., 2013. Nitrous oxide emissions from European agriculture an analysis of variability and drivers of emissions from field experiments. Biogeosciences, 10, 2671-2682.

Rella C.W., Chen H., Andrews A.E., Filges A., Gerbig C., Hatakka J., . . . Zellweger C., 2013. High accuracy measurements of dry mole fractions of carbon dioxide and methane in humid air. Atmos. Meas. Tech., 6, 837-860.

Rinne J., Pihlatie M., Lohila A., Thum T., Aurela M., Tuovinen J.-P., . . . Vesala T., 2005. Nitrous Oxide Emissions from a Municipal Landfill. Environmental Science & Technology, 39, 7790-7793.

Rinne J., Riutta T., Pihlatie M., Aurela M., Haapanala S., Tuovinen J.-P., . . . Vesala T., 2007. Annual cycle of methane emission from a boreal fen measured by the eddy covariance technique. Tellus B, 59, 449-457.

Rinne J., Tuittila E.-S., Peltola O., Li X., Raivonen M., Alekseychik P., . . . Vesala T., 2018. Temporal Variation of Ecosystem Scale Methane Emission From a Boreal Fen in Relation to Temperature, Water Table Position, and Carbon Dioxide Fluxes. Global Biogeochemical Cycles, 32, 1087-1106.

Sachs T., Wille C., Boike J., and Kutzbach L., 2008. Environmental controls on ecosystem-scale CH4 emission from polygonal tundra in the Lena River Delta, Siberia. Journal of Geophysical Research: Biogeosciences, 113, n/a-n/a.

Sayres D.S., Dobosy R., Healy C., Dumas E., Kochendorfer J., Munster J., . . . Anderson J.G., 2017. Arctic regional methane fluxes by ecotope as derived using eddy covariance from a low-flying aircraft. Atmos. Chem. Phys., 17, 8619-8633.

Scanlon T.M. and Kiely G., 2003. Ecosystem-scale measurements of nitrous oxide fluxes for an intensely grazed, fertilized grassland. Geophysical Research Letters, 30, n/a-n/a.

Schrier-Uijl A.P., Kroon P.S., Hensen A., Leffelaar P.A., Berendse F., and Veenendaal E.M., 2010. Comparison of chamber and eddy covariance-based CO2 and CH4 emission estimates in a heterogeneous grass ecosystem on peat. Agricultural and Forest Meteorology, 150, 825-831.

Schroth M.H., Eugster W., Gómez K.E., Gonzalez-Gil G., Niklaus P.A., and Oester P., 2012. Above- and below-ground methane fluxes and methanotrophic activity in a landfill-cover soil. Waste Management, 32, 879-889.

Schubert C.J., Diem T., and Eugster W., 2012. Methane Emissions from a Small Wind Shielded Lake Determined by Eddy Covariance, Flux Chambers, Anchored Funnels, and Boundary Model Calculations: A Comparison. Environmental Science & Technology, 46, 4515-4522.

Shoemaker J.K., Keenan T.F., Hollinger D.Y., and Richardson A.D., 2014. Forest ecosystem changes from annual methane source to sink depending on late summer water balance. Geophysical Research Letters, 41, 673-679.

Shurpali N.J., Rannik Ü., Jokinen S., Lind S., Biasi C., Mammarella I., . . . Martikainen P.J., 2016. Neglecting diurnal variations leads to uncertainties in terrestrial nitrous oxide emissions. Scientific Reports, 6, 25739.

Skiba U., Hargreaves K.J., Beverland I.J., ONeill D.H., Fowler D., and Moncrieff J.B., 1996. Measurement of field scale N2O emission fluxes from a wheat crop using micrometeorological techniques. Plant and Soil, 181, 139-144.

Skiba U., Jones S.K., Drewer J., Helfter C., Anderson M., Dinsmore K., . . . Sutton M.A., 2013. Comparison of soil greenhouse gas fluxes from extensive and intensive grazing in a temperate maritime climate. Biogeosciences, 10, 1231-1241.

Smeets C.J.P.P., Holzinger R., Vigano I., Goldstein A.H., and Röckmann T., 2009. Eddy covariance methane measurements at a Ponderosa pine plantation in California. Atmos. Chem. Phys., 9, 8365-8375.

Strack M., Keith A.M., and Xu B., 2014. Growing season carbon dioxide and methane exchange at a restored peatland on the Western Boreal Plain. Ecological Engineering, 64, 231-239.

Sun L., Song C., Miao Y., Qiao T., and Gong C., 2013. Temporal and spatial variability of methane emissions in a northern temperate marsh. Atmospheric Environment, 81, 356-363.

Tang A.C.I., Stoy P.C., Hirata R., Musin K.K., Aeries E.B., Wenceslaus J., and Melling L., 2018. Eddy Covariance Measurements of Methane Flux at a Tropical Peat Forest in Sarawak, Malaysian Borneo. Geophysical Research Letters, 45, 4390-4399.

Tans P.P., Crotwell A.M., and Thoning K.W., 2017. Abundances of isotopologues and calibration of CO2 greenhouse gas measurements. Atmos. Meas. Tech., 10, 2669-2685.

Tseng K.-H., Tsai J.-L., Alagesan A., Tsuang B.-J., Yao M.-H., and Kuo P.-H., 2010. Determination of methane and carbon dioxide fluxes during the rice maturity period in Taiwan by combining profile and eddy covariance measurements. Agricultural and Forest Meteorology, 150, 852-859.

Voigt C., Lamprecht R.E., Marushchak M.E., Lind S.E., Novakovskiy A., Aurela M., . . . Biasi C., 2017. Warming of subarctic tundra increases emissions of all three important greenhouse gases – carbon dioxide, methane, and nitrous oxide. Global Change Biology, 23, 3121-3138.

Wagner-Riddle C., Congreves K.A., Abalos D., Berg A.A., Brown S.E., Ambadan J.T., . . . Tenuta M., 2017. Globally important nitrous oxide emissions from croplands induced by freeze–thaw cycles. Nature Geoscience, 10, 279.

Wang J.M., Murphy J.G., Geddes J.A., Winsborough C.L., Basiliko N., and Thomas S.C., 2013a. Methane fluxes measured by eddy covariance and static chamber techniques at a temperate forest in central Ontario, Canada. Biogeosciences, 10, 4371-4382.

Wang K., Zheng X., Pihlatie M., Vesala T., Liu C., Haapanala S., . . . Liu H., 2013b. Comparison between static chamber and tunable diode laser-based eddy covariance techniques for measuring nitrous oxide fluxes from a cotton field. Agricultural and Forest Meteorology, 171-172, 9-19.

Wang M., Wu J., Luan J., Lafleur P., Chen H., and Zhu X., 2017. Near-zero methane emission from an abandoned boreal peatland pasture based on eddy covariance measurements. PLOS ONE, 12, e0189692.

Webb E.K., Pearman G.I., and Leuning R., 1980. Correction of flux measurements for density effects due to heat and water vapour transfer. Quarterly J. Royal Meteorological Society, 106, 85-100.

Werle P., and Kormann R., 2001. Fast chemical sensor for eddy-correlation measurements of methane emissions from rice paddy fields. Applied Optics, 40, 846-858.

Werle P., Mücke R., and Slemr F., 1993. The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS). Appl. Phys. B, 57, 131-139.

Wienhold F.G., Welling M., and Harris G.W., 1995. Micro-meteorological measurement and source region analysis of nitrous oxide fluxes from an agricultural soil. Atmospheric Environment, 29, 2219-2227.

Wille C., Kutzbach L., Sachs T., Wagner D., and Pfeiffer E.-M., 2008. Methane emission from Siberian arctic polygonal tundra: eddy covariance measurements and modeling. Global Change Biology, 14, 1395-1408.

Wolf B., Merbold L., Decock C., Tuzson B., Harris E., Six J., . . . Mohn J., 2015. First on-line isotopic characterization of N2O above intensively managed grassland. Biogeosciences, 12, 2517-2531.

Wu J., Larsen K.S., van der Linden L., Beier C., Pilegaard K., and Ibrom A., 2013. Synthesis on the carbon budget and cycling in a Danish, temperate deciduous forest. Agricultural and Forest Meteorology, 181, 94-107.

Xu L., Lin X., Amen J., Welding K., and McDermitt D., 2014. Impact of changes in barometric pressure on landfill methane emission. Global Biogeochemical Cycles, 28, 679-695.

Yu L., Wang H., Wang G., Song W., Huang Y., Li S.-G., . . . He J.-S., 2013. A comparison of methane emission measure ments using eddy covariance and manual and automated chamber-based techniques in Tibetan Plateau alpine wetland. Environmental Pollution, 181, 81-90.

Zenone T., Zona D., Gelfand I., Gielen B., Camino-Serrano M., and Ceulemans R., 2016. CO2 uptake is offset by CH4 and N2O emissions in a poplar short-rotation coppice. GCB Bioenergy, 8, 524-538.

Zona D., Gioli B., Commane R., Lindaas J., Wofsy S.C., Miller C.E., . . . Oechel W.C., 2016. Cold season emissions dominate the Arctic tundra methane budget. Proceedings of the National Academy of Sciences, 113, 40-45.

Zona D., Janssens I.A., Aubinet M., Gioli B., Vicca S., Fichot R., and Ceulemans R., 2013a. Fluxes of the greenhouse gases (CO2, CH4 and N2O) above a short-rotation poplar plantation after conversion from agricultural land. Agricultural and Forest Meteorology, 169, 100-110.

Zona D., Janssens I.A., Gioli B., Jungkunst H.F., Serrano M.C., and Ceulemans R., 2013b. N2O fluxes of a bio-energy poplar plantation during a two years rotation period. GCB Bioenergy, 5, 536-547.

Zona D., Oechel W.C., Kochendorfer J., Paw U K.T., Salyuk A.N., Olivas P.C., . . . Lipson D.A., 2009. Methane fluxes during the initiation of a large-scale water table manipulation experiment in the Alaskan Arctic tundra. Global Biogeochemical Cycles, 23, n/a-n/a.

International Agrophysics

The Journal of Institute of Agrophysics of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2017: 1.242
5-year IMPACT FACTOR: 1.267

CiteScore 2017: 1.38

SCImago Journal Rank (SJR) 2017: 0.435
Source Normalized Impact per Paper (SNIP) 2017: 0.849


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 475 475 108
PDF Downloads 372 372 65