Soil ploughing for forest regeneration leads to changes in carbon decomposition – a case study with stable isotopes

Open access


It is important to quantify carbon decomposition to assess the reforestation impact on the forest floor C stocks. Estimating the loss of C stock in a short-term perspective requires measuring changes in soil respiration. This is not trivial due to the contribution of both soil microbes and vegetation to the measured CO2 flux. However, C stable isotopes can be used to partition the respiration and potentially to assess how much of the recalcitrant C stock in the forest floor is lost. Here, we measured the soil respiration at two forest sites where different regeneration methods were applied, along with an intact forest soil for reference. In so doing, we used a closed dynamic chamber for measuring respiration and the 13C composition of the emitted CO2. The chamber measurements were then supplemented with the soil organic carbon analysis and its δ13C content. The mean δ13C-CO2 estimates for the source of the CO2 were -26.4, -27.9 and -29.5‰, for the forest, unploughed and ploughed, respectively. The 13C of the soil organic carbon did, not differ significantly between sites. The higher soil respiration rate at the forest, as compared to the unploughed site, could be attributed to the autotrophic respiration by the forest floor vegetation.

Acosta M., Pavelka M., Tomaškova I., Montagnani L., Kutsch W., Lindroth A., Juszczak R., and Janouš D., 2013. Soil surface CO2 efflux measurements In Norway spruce Forests: Comparison between four sites across Europe - from boreal to Alpine forest. Geoderma, 192, 295-303.

Affek H.P. and Yakir D., 2014. The stable isotopic composition of atmospheric CO2. Elsevier Ltd.

Bahn M., Lattanzi F. A., Hasibeder R., Wild B., Koranda M., Danese V., Brüggemann N., Schmitt M., Siegwolf R., and Richter A., 2013. Responses of belowground carbon allocation dynamics to extended shading in mountain grassland. New Phytologist, 198, 116-126.

Bahn M., Schmitt M., Siegwolf R., Richter A., and Brüggemann N., 2009. Does photosynthesis affect grassland soil-respired CO2 and its carbon isotope composition on a diurnal timescale? New Phytologist, 182(2), 451-60.

Bowling D., Egan J., Hall S., and Risk D., 2015. Environmental forcing does not induce diel or synoptic variation in the carbon isotope content of forest soil respiration. Biogeosciences, 12, 5143-5160.

Bowling D.R., Pataki D.E., and Randerson J.T., 2008. Carbon isotopes in terrestrial ecosystem pools and CO2 fluxes. New Phytologist, 178(1), 24-40.

Brugonli E. and Farquhar G.D., 2000. Photosynthetic fractionation of carbon isotopes. Physiology and Metabolism, 399-434.

Chojnicki B.H., Urbaniak M., Leśny J., Juszczak R., and Olejnik J., 2008. Modern methods to measure mass and energy exchanges between the soil and the atmosphere (in Polish). Przegląd Naukowy - Inżynieria i Kształtowanie Środowiska, 39, 91-97.

Damesin C. and Lelarge C., 2003. Carbon isotope composition of current-year shoots from Fagus sylvatica in relation to growth, respiration and use of reserves. Plant Cell Environ., 26, 207-219.

Davidson E.A., Belk E., and Boone R.D., 1998. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biol., 4, 217-227.

Edwards N.T., 1975. Effects of temperature and moisture on carbon dioxide evolution in a mixed deciduous forest floor. Soil Sci. Soc. Am. Proc., 39, 361-365.

Ekbald A. and Högberg P., 2001. Natural abundance of 13C in CO2 respired from forest soils reveals speed of link between tree photosynthesis and root respiration. Oecologia, 127, 305-308.

Farquhar G.D., Ehleringer J.R., and Hubick K.T., 1989. Carbon isotope discrimination and photosynthesis. Annual Rev. Plant Physiology, 40, 503-537.

Forest management plan for the Trzebciny Forest Division for theperiod 01.01.2007 - 31.12.2016 (in Polish). Bureau for Forest Management and Geodesy, Gdynia, Poland.

Ghashghaie J., Badeck F.W., Lanigan G., Nogues S., Tcherkez Deleens E., Cornic G., and Griffiths H., 2003. Carbon isotope fractionation during dark respiration and photorespiration in C3 plants; Phytochemistry Reviews, 2, 145-161.

Görres C.M., Kammann C., and Ceulemans R., 2016. Automation of soil flux chamber measurements: potentials and pitfalls. Biogeosciences, 13, 1949-1966.

Jakubowski J., Gornowicz R., Pilarek Z., and Kiedrowski T., 2013. The influence of cutting residues management and soil preparation methods on height of 3-year-old Scots pine (Pinus sylvestris L.) plantation. Acta Sci. Pol., Silv. Colendar. Rat. Ind. Lignar., 12(4), 33-41.

Jandl R., Lindner M., Vesterdal L., Bauwens B., Baritz R., Hagedorn P., Johnson D.W., Minkkinen K., and Byrne K.A., 2007. How strongly can forest management influence soil carbon sequestration. Geoderma, 137, 253-268.

Johnson D.W. and Curtis P.S., 2001. Effects of forest management on soil C and N storage: meta analysis. Forest Ecology and Manag., 140, 227-238.

Juszczak R. and Augustin J., 2013. Exchange of the greenhouse gases methane and nitrous oxide at a temperate pristine fen mire in Central Europe. Wetlands, 33(5), 895-907.

Keeling C.D., 1958. The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas. Geochimica et Cosmochimica Acta, 13, 322-334.

Keeling C.D., 1961. The concentration and isotopic abundance of carbon dioxide in rural and marine air. Geochimica et Cosmochimica Acta, 24, 277-298.

Le Quéré C., Andres R.J., Boden T., Conway T., Houghton R.A., House J.I., Marland G., Peters G.P., van der Werf G.R., Ahlström A., Andrew R.M., Bopp L., Canadell J.G., Ciais P., Doney S.C., Enright C., Friedlingstein P., Huntingford C., Jain A.K., Jourdain C., Kato E., Keeling R.F., Klein Goldewijk K., Levis S., Levy P., Lomas M., Poulter B., Raupach M.R., Schwinger J., Sitch S., Stocker B.D., Viovy N., Zaehle S., and Zeng N., 2013. The global carbon budget 1959-2011. Earth System Science Data, 5, 1107-1157.

Liang L.L., Riveros-Iregui D.A., Risk D.A., 2016. Spatial and seasonal variabilities of the stable carbon isotope composition of soil CO2 concentration and flux in complex terrain. J. Geophysical Res., Biogeosienes, 121, 2328-2339.

Lorenc H., 2005. Atlas of climate of Poland (in Polish). Institute of Meteorology and Water Management, Warsaw, Poland.

Menichetti L., Houout S., van Oort F., Katterer T., Christensen B.T., Chenu C., Barre P., Vasilyeva N.A., and Ekbald A., 2014. Increase in soil stable carbon isotope ratio relates to loss of organic carbon; results from five-term bare fallow experiments. Oecologia, 177(3), 811-821, doi:


O’Leary M.H., 1993. Biochemical basis of carbon isotope fractionation. Stable Isotopes and Plant CarbonWater Relations, 19-28.

Pan Y., Birdsey R.A., Fang J., Houghton R., Kauppi P.E., Kurz W.A., Phillips O.L., Shvidenko A., Lewis S.L., Canadell J.G., Ciais P., Jackson R.B., Pacala S.W., McGuire D., Piao S., Rautiainen A., Sitch S., and Hayes D., 2011. A large and persistent carbon sink in the world’s forests. Science, 333, 988-993.

Pataki D.E., Eheringer J.R., Flanagan L.B., Yakir D., Bowling D.R., Still C.J., Buchmann N., Kapan J.O., and Berry J.A., 2003. The application and interpretation of Keeling plots in terrestrial carbon cycle research. Global Biogeochemical Cycles, 17(1), 1022, doi:

Persson T., Karlsson PS., Seyferth U., Sjöberg R.M., and Rudebeck A., 2000. Carbon mineralization in European forest soils. Ecological Studies, 142, 257-275.

Pumpanen J., Westman C.J., and Ilvesniemi H., 2004. Soil CO2 efflux from a podzolic forest soil before and after forestclear-cutting and site preparation. Boreal Environment Res., 9, 199-212.

Salonius P.O., 1983. Effects of organic-mineral soil mixtures and increasing temperature on the respiration of coniferous raw humus material. Can. J. For. Res., 13, 102-107.

Schulp J.E.C., Nabuurs G.J., Verburg P.H., and de Waal R.W., 2008. Effect of tree species on carbon stocks in forest floor and mineral soil and implications for soil carbon inventories. Forest Ecology Manag., 256, 482-490.

Schulze E.-D., 2000. The carbon and nitrogen cycles of forest ecosystems in Carbon and Nitrogen Cycling in European Forest Ecosystems (Ed.), Ecological Studies, Springer-Verlag, Berlin, Heidelberg, New York ISBN 3-540-67025-4:3-11.

Snell H.K., Robinson D., and Midwood A.J., 2014. Minimizing methodological biases to improve the accuracy of portioning soil respiration using natural abundance 13C. Rapid Communication in Mass Spectrometry, 28, 2341-2351.

The guide of forest management, 2012. Ed. M. Haze, Clip, Warszawa, Poland.

Thuille A. and Schulze E.D., 2006. Carbon dynamics in successional and afforested spruce stands in Thuringia and the Alps. Global Change Biology, 12, 325-342.

Ussiri D.A.N. and Lal R., 2009. Long- term tillage effects on soil carbon storage and carbon dioxide emissions in continuous corn cropping system from alfisol in Ohio. Soil Till. Res., 104, 39-47.

van Asperen H., Warneke T., Sabbatini S., Höpker M., Nicolini G., Chiti T., Papale D., Böhm M., and Notholt J., 2017. Diel variation in isotopic composition of soil respiratory CO2 fluxes: The role of non-steady state conditions Agric. Forest Meteorol., 234-235, 95-105.

Vogel J.C., 1993. Variability of carbon isotope fractionation during photosynthesis. In: Stable Isotopes and Plant Carbon-Water Relations (Eds B. Saugier, J.R. Ehleringer, A.E. Hall, and G.D. Farquhar), Academic Press, Elsevier Inc. San Diego-Boston-New York-London-Sydney-Tokyo-Toronto.

Wang M., Guan D.X., Han S.J., and Wu J.L., 2009. Comparison of Eddy Covariance and chamber-based methods for measuring CO2 flux in temperate mixed forest. Tree Physiol, 30, 149-163.

Xu M. and Qi Y., 2001. Soil-surface CO2 efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California. Global Change Biology, 7, 667-677.

Yakir D., 2003. The stable isotopic composition of atmospheric CO2. In: Treatise on Geochemistry (Eds Ralph F. Keeling), Elsevier, 347, 175-212.

International Agrophysics

The Journal of Institute of Agrophysics of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2017: 1.242
5-year IMPACT FACTOR: 1.267

CiteScore 2017: 1.38

SCImago Journal Rank (SJR) 2017: 0.435
Source Normalized Impact per Paper (SNIP) 2017: 0.849


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 198 198 19
PDF Downloads 116 116 14