Two-stage agglomeration of fine-grained herbal nettle waste

Open access

Abstract

This paper compares the densification work necessary for the pressure agglomeration of fine-grained dusty nettle waste, with the densification work involved in two-stage agglomeration of the same material. In the first stage, the material was pre-densified through coating with a binder material in the form of a 5% potato starch solution, and then subjected to pressure agglomeration. A number of tests were conducted to determine the effect of the moisture content in the nettle waste (15, 18 and 21%), as well as the process temperature (50, 70, 90°C) on the values of densification work and the density of the obtained pellets. For pre-densified pellets from a mixture of nettle waste and a starch solution, the conducted tests determined the effect of pellet particle size (1, 2, and 3 mm) and the process temperature (50, 70, 90°C) on the same values. On the basis of the tests, we concluded that the introduction of a binder material and the use of two-stage agglomeration in nettle waste densification resulted in increased densification work (as compared to the densification of nettle waste alone) and increased pellet density.

Carone M.T., Pantaleo A., and Pellerano A., 2010. Influence of process parameters and biomass characteristics on the durability of pellets from the pruning residues of Olea europaea L. Biomass and Bioenergy, 30, 1-9.

Chou C.S., Lin S.H., and Lu W.C., 2009. Preparation and characterization of solid biomass fuel made from rice straw and rice bran. Fuel Processing Technol., 90, 980-987.

Filbakk T., Jirjis R., Nurmi J., and Høibø O., 2011. The effect of bark content on quality parameters of Scots pine (Pinus sylvestris L.) pellets. Biomass Bioenergy, 35, 3342-3349.

Finney K.N., Sharifi V.N., and Swithenbank J., 2009. Fuel pelletisation with a binder: Part I - Identification of a suitable binder for spent mushroom compost – coal tailing pellets. Energy Fuels, 23, 3195–3202.

Flore K., Schoenherr M., and Feise H., 2009. Aspects of granulation in the chemical industry. Powder Technol., 189, 327-331.

Gilbert P., Ryu C., Sharifi V., and Swithenbank J., 2009. Effect of process parameters on pelletisation of herbaceous crops. Fuel, 88, 1491-1497.

Hanczakowska E., 2007. Herbs and herb preparations in pig feeding (in Polish). Zootechnical Messages, 45(3), 19-23.

Herting M.G. and Kleinebudde P., 2007. Roll compaction/dry granulation: Effect of raw material particle size on granule and tablet properties. Int. J. Pharmaceutics, 7, 338, 110-118.

Hryniewicz M., Bembenek M., and Gara P., 2008. Problem of roll press compacting unit selection to consolidate material in two-stage granulation process. Chemik, 61, 9, 425-428.

Gluba T., 2003. The effect of wetting liquid droplet size on the growth of agglomerates during wet drum granulation. Powder Technology, 130, 219-224.

Gluba T. and Obraniak A., 2009. The kinetics of agglomeration of particulate material in the disc granulator (in Polish). Inżynieria i Aparatura Chemiczna, 48, 4, 46-47.

Hejft R. and Leszczuk T., 2011. Selection of process parameters for no-pressure agglomeration (encapsulation of seeds). Part I: Experimental stand (In Polish). Inżynieria i Aparatura Chemiczna, Nr 1/2011, 15-16.

Kaliyan N. and Morey RV., 2010. Natural binders and solid bridge type binding mechanisms in briquettes and pellets made from corn stover and switchgrass. Bioresource Technol., 101, 1082-1090.

Kashaninejad M., Tabil L.G., and Knox R., 2014. Effect of compressive load and particle size on compression characteristics of selected varieties of wheat straw grinds. Biomass Bioenergy, 60, 1-7.

Larsson S.H. and Rudolfsson M., 2012. Temperature control in energy grass pellet production: Effects on process stability and pellet quality. Applied Energy, 97, 24-29.

Laskowski J. and Skonecki S., 2001. Influence of material’s temperature on compression parameters of ground barley grains. International Agrophysics, 15, 173-179.

Li H., Jiang L.B., Li C.Z., Liang J., Yuan X.Z., Xiao Z.H., Xiao Z.H., and Wang H., 2015. Co-pelletization of sewage sludge and biomass: The energy input and properties of pellets. Fuel Processing Technol., 132, 55-61.

Mani S., Lope G., Tabil L.G., and Sokhansanj S., 2006a. Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses. Biomass Bioenergy, 30, 648-654.

Mani S., Tabil L.G., and Sokhansanj S., 2006b. Specific energy requirement for compacting corn stover, Bioresource Technol., 97, 1420-1426.

Mediavilla I., Fernández M.J., and Esteban L.S., 2009. Optimization of pelletisation and combustion in a boiler of 17.5 kWth for vine shoots and industrial cork residue, Fuel Processing Technol., 90, 621-628.

Monedero E., Portero H., and Lapuerta M., 2015. Pellet blends of poplar and pine sawdust: Effects of material composition, additive, moisture content and compression die on pellet quality. Fuel Processing Technol., 132, 15-23.

Montero I., Miranda T., Sepúlveda F.J., Arranz J.I., and Nogales S., 2014. Analysis of pelletizing of granulometric separation powder from cork industries. Materials, 7, 6686-6700.

Nguyen Q.N., Cloutier A., Achim A., and Stevanovic T., 2015. Effect of process parameters and raw material characteristics on physical and mechanical properties of wood pellets made from sugar maple particles. Biomass Bioenergy, 80, 338-349.

Niedziółka I., Szymanek M., Zuchniarz A., and Zawiślak K., 2008. Characteristics of pellets produced from selected plants mixes. TEKA Komisji Motoryzacji i Energetyki Rolnictwa. OL PAN, 8, 157-162.

Nielsen N.P.K., Holm J.K., and Felby C., 2009. Effect of fiber orientation on compression and frictional properties of sawdust particles in fuel pellet production. Energy Fuel, 23, 3211-3216.

Obidziński S., 2012a. Pelletization process of postproduction plant waste. Int. Agrophys., 26, 279-284.

Obidziński S., 2012b. Analysis of usability of potato pulp as solid fuel. Fuel Processing Technology. Fuel Processing Technol., 94, 67-74.

Obidzinski S., 2014a. Pelletisation of biomass waste with potato pulp content. Int. Agrophys., 28, 85-91.

Obidziński S., 2014b. Utilization of post-production waste of potato pulp and buckwheat hulls in the form of pellets. Polish J. Environ. Stud., 23, 1391-1395.

Obidziński S., Piekut J., and Dec D., 2016. The influence of pulp content on the properties of pellets from buckwheat hulls. Renewable Energy, 87, 289-297.

Obraniak A. and Gluba T., 2011. A model of granule porosity changes during drum granulation, Physicochemical Problems Mineral Proc., 46, 219-228.

Ohman M., Boman C., Hedman H., and Eklund R., 2006. Residential combustion performance of pelletized hydrolysis residue from lignocellulosic ethanol production. Energy Fuels, 20, 298-304.

Paschma J., 2004. Effect of using herbs in diets of periparturient sows on the course of parturition and reproductive performance. Annals Animal Sci., Suppl. 1, 293-295.

Payne J., Rattink W., Smith T., and Winowiski T., 2001. Pelleting Handbook. A Guide for production staff in the compound feed industry. Borregaard Lignotech.

PN-89/R-64798. Feeds. Determination of disintegration (in Polish).

PN-EN 14774-1: 2010. Solid biofuels. - Determination of moisture content. Drier method. Part 1: Total moisture - Reference method.

Razuan R., Finney K.N., Chen Q., Sharifi V.N., and Swithenbank J., 2011. Pelletised fuel production from palm kernel cake, Fuel Processing Technol., 92, 609-615.

Robohm K.F. and Apelt J., 1989. Verhoging van de flexibiliteit door gebruik van het perssysteem met voorverdichting. De Molenaar, 92, 615-625.

Ryu C., Finney K., Sharifi V.N., and Swithenbank J., 2008. Pelletised fuel production from coal tailings and spent mushroom compost – Part I: Identification of pelletisation parameters, Fuel Processing Technol., 89, 269-275.

Shaw M.D., Karunakaran C., and Tabil L.G., 2009. Physicochemical characteristics of densified untreated and steam exploded poplar wood and wheat straw grinds. Biosystems Eng., 103, 198-207.

Shipe K.J., Evans A.M., Wamsley K.G.A., and Moritz J.S., 2012. Pelleting does not decrease lysine digestibility. Poultry Science, 91 (Suppl. 1, Abstr. 132).

Sobczak P., 2004. Agglomeration of selected food powder materials (in Polish). Ph.D. Thesis, Agricultural University of Lublin, Poland.

Sotannde O.A., Oluyege A.O., and Abah G.B., 2010. Physical and combustion properties of charcoal briquettes from neem wood residues. Int. Agrophys., 24, 189-194.

Stasiak M., Molenda M., Opaliński I., and Błaszczak W., 2013. Mechanical properties of native maize, wheat, and potato starches. Czech J. Food Sci., 31(4), 347-354.

Wildeboer W.J., Litster J.D., and Cameron I.T., 2005. Modelling nucleation in wet granulation. Chemical Eng. Sci., 60, 3751-3761.

International Agrophysics

The Journal of Institute of Agrophysics of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2017: 1.242
5-year IMPACT FACTOR: 1.267

CiteScore 2018: 1.44

SCImago Journal Rank (SJR) 2018: 0.399
Source Normalized Impact per Paper (SNIP) 2018: 0.891

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 186 146 14
PDF Downloads 122 116 5