Methanogenic community composition in an organic waste mixture in an anaerobic bioreactor

Open access

Abstract

The aim of the study was to elucidate the substantial relationship between the compositions of methanogen community that assembles in the anaerobic digester mass and link it to methane production activity. The results of the metagenomic studies were used to evaluate how the methanogen structure changes during an anaerobic digestion process under various waste retention times (21, 23, 25, 29, 33, 39, 47 and 61 days). Phylogenetically coherent populations of methanogens were assessed by 16S rRNA gene next-generation sequencing and terminal restriction fragment length polymorphism fingerprinting of a specific molecular marker, the mcrA gene. The results indicated multiple phylogenetically diverse methanogen populations associated with the various steps of anaerobic digestion. The stages of the anaerobic digestion process and waste retention times determine the microbial composition. The most dominant and acclimated microbial communities in all samples belonged to the genera Methanosaeta and Methanobacterium. The methane yield was consistent with the results of the microbial community structure, which indicated that acetotrophic Methanosaeta was the most active and most important during the methanogenic stage.

Abendroth C., Vilanova C., Günther T., Luschnig O., and Porcar M., 2015. Eubacteria and archaea communities in seven mesophile anaerobic digester plants in Germany. Biotechnol. Biofuels, 1, 8-87.

Angelidaki I. and Sanders W., 2004. Assessment of the anaerobic biodegradability of mactopollutants. Reviews in Environ. Sci. Biotechnol., 173, 117-129.

APHA (American Public Health Association), 1998. Standard methods for the examination of water and wastewater. APHA, Washington, DC, USA.

Bouallagui H., Torrijos M., Godon J.J., Moletta R., Cheikh R.B., and Touhami Y., 2004. Microbial monitoring by molecular tools of a two-phase anaerobic bioreactor treating fruit and vegetable wastes. Biotechnology Letters, 10, 857-862.

Brzezińska M., Nosalewicz M., Pasztelan M., and Włodarczyk T., 2012. Methane production and consumption in loess soil at different slope position. Scientific World J., 1-8.

Caporaso J.G., Lauber C.L., Walters W.A., Berg-Lyons D., Huntley J., Fierer N., Owens S.M., Betley J., Fraser L., Bauer M., Gormley N., Gilbert J.A., Smith G., and Knight R., 2012. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J., 6, 1621-1624.

Demirel B. and Scherer P., 2008. The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review. Reviews in Environ. Sci. Biotechnol., 7, 173-190.

DeSantis T.Z., Hugenholtz P., Larsen N., Rojas M., Brodie E.L., Keller K., Huber T., Delevi D., Hu P., and Andersen G.L., 2006. Greengenes, a chimera-checked 16S rRNA gene gatabase and workbench compatible with ARB. App. Environ. Microbiol., 72, 5069-5072.

Enitan A.M., Kumari S., Swalaha F.M. Adeyemo J., Ramdhani N., and Bux F., 2014. Kinetic modeling and characterization of microbial community present in a full-scale UASB reactor treating brewery effluent. Microbial Ecology, 62, 358-368.

Esposito G., Frunzo L., Liotta F., Panico A., and Pirozzi F., 2012. Bio-methane potential test to measure the biogas production from the digestion and co-digestion of complex organic substrates. Open Environmental Eng. J., 5, 1-8.

Frąc M. and Ziemiński K., 2012. Methane fermentation process for utilization of organic waste. Int. Agrophys., 26, 317-330.

Garcia J.L., Patel B.K., and Ollivier B., 2000. Taxonomic phylogenetic and ecological diversity of methanogenic Archaea. Anaerobe, 6, 205-226.

Hansen T.L., Schmidt J.E., Angelidaki I., Marca E., Jansen J., Mosbaek H., and Christensen T.H., 2004. Method for determination of methane potentials of solid organic waste. Waste Management, 24, 393-400.

Kane E.S., Chivers M.R., Turetsky M.R., Treat C.C., Petersen D.G., Waldrop M., Harden J.W., and McGuire A.D., 2013. Response of anaerobic carbon cycling to water table manipulation in an Alaskan rich fen. Soil Biol. Biochemistry, 85, 50-60.

Kitts C.L., 2001. Terminal restriction fragment patterns: a tool for comparing microbial communities and assessing community dynamics. Current Issues Intestinal Microbiol., 2, 7-25.

Lipiec J., Brzezińska M., Turski M., Szarlip P., and Frąc M., 2015. Wettability and biogeochemical properties of the drilosphere and casts of endogeic earthworms in pear orchard. Soil Till. Res., 145, 55-61.

Nikolausz M., Walter R.F., Sträuber H., Liebetrau J., Schmidt T., Kleinsteuber S., Bratfisch F., Günther U., and Richnow H.H., 2013. Evaluation of stable isotope fingerprinting techniques for the assessment of the predominant methanogenic pathways in anaerobic digesters. App. Microbiol. Biotechnol., 5, 2251-2262.

Pervin H.M., Dennis P.G., Lim H.J., Tyson G.W., Batstone D.J., and Bond P.L., 2013. Drivers of microbial community composition in mesophilic and thermophilic temperature-phased anaerobic digestion pre-treatment reactors. Water Res., 47, 7098-7108.

Raposo F., de la Rubia M.A., Borja R., and Alaiz M., 2008. Assesment of a modiefied and optimised method for determining chemical oxygen demand of solid substrates and solutions with high suspended solid content. Talanta, 76, 448-453.

Shah F.A., Mahmood Q., Shah M.M., Pervez A., and Asad S.A., 2014. Microbial ecology of anaerobic digesters: The key players of anaerobiosis. Scientific World J., 24, 1-21.

Shimada T., Morgenroth E., Tandukar M., Pavlostathis S.G., Smith A., Raskin L., and Kilian R.E., 2011. Syntrophic acetate oxidation in two-phase (acid-methane) anaerobic digesters. Water Sci. Technol., 2, 812-1820.

Song L., Wang, Y., Tang W., and Lei Y., 2015. Archaeal community diversity in municipal waste landfill sites. Appl. Microbiol. Biotechnol., 14, 6125-37.

Steinberg L.M. and Regan J.M., 2008. Phylogenetic comparison of the methanogenic communities from an acidic, oligotrophic fen and an anaerobic digester treating municipal wastewater sludge. Appl. Environ. Microbiology, 74, 6663-6671.

Vanwonterghem I., Jensen P.D., Dennis P.G., Hugenholtz P., Rabaey K., and Tyson G.W., 2014. Deterministic processes guide long-term synchronised population dynamics in replicate anaerobic digesters. ISME J., 8, 2015-2028.

Vedrenne F., Béline F., Dabert P., and Bernet N., 2008. The effect of incubation conditions on the laboratory measurement of the methane producing capacity of livestock wastes. Bioresource Technol., 99, 146-155.

Walter A., Knapp B.A., Farbmacher T., Ebner C., Insam H., and Franke-Whittle I.H., 2012. Searching for links in the biotic characteristics and abiotic parameters of nine different biogas plants. Microbial Biotechnol., 5, 717-730.

Wang C., Zuo J., Chen X., Xing W., Xing L., Li P., Lu X., and Li C., 2014. Microbial community structures in an integrated two-phase anaerobic bioreactor fed by fruit vegetable wastes and wheat straw. J. Environ. Sci., 12, 2484-2492.

Whang L.M., Hu T.H., Liu P.W., Hung Y.C., Fukushima T., Wu Y.J., and Chang S.H., 2015. Molecular analysis of methanogens involved in methanogenic degradation of tetramethylammonium hydroxide in full-scale bioreactors. App. Microbi. Biotechnol., 99, 1485-1497.

Ziemiński K., Romanowska I., Kowalska-Wentel M., and Cyran M., 2014. Effects of hydrothermal pretreatment of sugar beet pulp for methane production. Bioresource Technol., 166, 187-193.

International Agrophysics

The Journal of Institute of Agrophysics of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2017: 1.242
5-year IMPACT FACTOR: 1.267

CiteScore 2017: 1.38

SCImago Journal Rank (SJR) 2017: 0.435
Source Normalized Impact per Paper (SNIP) 2017: 0.849

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 170 170 7
PDF Downloads 81 81 6